Journal tags: frontend



Hey now

Progressive enhancement is at the heart of everything I do on the web. It’s the bedrock of my speaking and writing too. Whether I’m writing about JavaScript, Ajax, HTML, or service workers, it’s always through the lens of progressive enhancement. Sometimes I explicitly bang the drum, like with Resilient Web Design. Other times I don’t mention it by name at all, and instead talk only about its benefits.

I sometimes get asked to name some examples of sites that still offer their core functionality even when JavaScript fails. I usually mention, although that has other issues. But quite often I find that a lot of the examples I might mention are dismissed as not being “web apps” (whatever that means).

The pushback I get usually takes the form of “Well, that approach is fine for websites, but it wouldn’t work something like Gmail.”

It’s always Gmail. Which is odd. Because if you really wanted to flummox me with a product or service that defies progressive enhancement, I’d have a hard time with something like, say, a game (although it would be pretty cool to build a text adventure that’s progressively enhanced into a first-person shooter). But an email client? That would work.

Identify core functionality.

Read emails. Write emails.

Make that functionality available using the simplest possible technology.

HTML for showing a list of emails, HTML for displaying the contents of the HTML, HTML for the form you write the response in.


Now add all the enhancements that improve the experience—keyboard shortcuts; Ajax instead of full-page refreshes; local storage, all that stuff.

Can you build something that works just like Gmail without using any JavaScript? No. But that’s not what progressive enhancement is about. It’s about providing the core functionality (reading and writing emails) with the simplest possible technology (HTML) and then enhancing using more powerful technologies (like JavaScript).

Progressive enhancement isn’t about making a choice between using simpler more robust technologies or using more advanced features; it’s about using simpler more robust technologies and then using more advanced features. Have your cake and eat it.

Fortunately I no longer need to run this thought experiment to imagine what it would be like if something like Gmail were built with a progressive enhancement approach. That’s what HEY is.

Sam Stephenson describes the approach they took:

HEY’s UI is 100% HTML over the wire. We render plain-old HTML pages on the server and send them to your browser encoded as text/html. No JSON APIs, no GraphQL, no React—just form submissions and links.

If you think that sounds like the web of 25 years ago, you’re right! Except the HEY front-end stack progressively enhances the “classic web” to work like the “2020 web,” with all the fidelity you’d expect from a well-built SPA.

See? It’s not either resilient or modern—it’s resilient and modern. Have your cake and eat it.

And yet this supremely sensible approach is not considered “modern” web development:

The architecture astronauts who, for the past decade, have been selling us on the necessity of React, Redux, and megabytes of JS, cannot comprehend the possibility of building an email app in 2020 with server-rendered HTML.

HEY isn’t perfect by any means—they’ve got a lot of work to do on their accessibility. But it’s good to have a nice short answer to the question “But what about something like Gmail?”

It reminds me of responsive web design:

When Ethan Marcotte demonstrated the power of responsive design, it was met with resistance. “Sure, a responsive design might work for a simple personal site but there’s no way it could scale to a large complex project.”

Then the Boston Globe launched its responsive site. Microsoft made their homepage responsive. The floodgates opened again.

It’s a similar story today. “Sure, progressive enhancement might work for a simple personal site, but there’s no way it could scale to a large complex project.”

The floodgates are ready to open. We just need you to create the poster child for resilient web design.

It looks like HEY might be that poster child.

I have to wonder if its coincidence or connected that this is a service that’s also tackling ethical issues like tracking? Their focus is very much on people above technology. They’ve taken a human-centric approach to their product and a human-centric approach to web development …because ultimately, that’s what progressive enhancement is.


There’s a new project from Igalia called Open Prioritization:

An experiment in crowd-funding prioritization of new feature implementations for web browsers.

There is some precedent for this. There was a crowd-funding campaign for Yoav Weiss to implement responsive images in Blink a while back. The difference with the Open Prioritization initiative is that it’s also a kind of marketplace for which web standards will get the funding.

Examples include implementing the CSS lab() colour function in Firefox or implementing the :not() pseudo-class in Chrome. There are also some accessibility features like the :focus-visible pseudo-class and the inert HTML attribute.

I must admit, it makes me queasy to see accessibility features go head to head with other web standards. I don’t think a marketplace is the right arena for prioritising accessibility.

I get a similar feeling of discomfort when a presentation or article on accessibility spends a fair bit of time describing the money that can be made by ensuring your website is accessible. I mean, I get it: you’re literally leaving money on the table if you turn people away. But that’s not the reason to ensure your website is accessible. The reason to ensure that your website is accessible is that it’s the right thing to do.

I know that people are uncomfortable with moral arguments, but in this case, I believe it’s important that we keep sight of that.

I understand how it’s useful to have the stats and numbers to hand should you need to convince a sociopath in your organisation, but when numbers are used as the justification, you’re playing the numbers game from then on. You’ll probably have to field questions like “Well, how many screen reader users are visiting our site anyway?” (To which the correct answer is “I don’t know and I don’t care”—even if the number is 1, the website should still be accessible because it’s the right thing to do.)

It reminds of when I was having a discussion with a god-bothering friend of mine about the existence or not of a deity. They made the mistake of trying to argue the case for God based on logic and reason. Those arguments didn’t hold up. But had they made their case based on the real reason for their belief—which is faith—then their position would have been unassailable. I literally couldn’t argue against faith. But instead, by engaging in the rules of logic and reason, they were applying the wrong justification to their stance.

Okay, that’s a bit abstract. How about this…

In a similar vein to talks or articles about accessibility, talks or articles about diversity often begin by pointing out the monetary gain to be had. It’s true. The data shows that companies that are more diverse are also more profitable. But again, that’s not the reason for having a diverse group of people in your company. The reason for having a diverse group of people in your company is that it’s the right thing to do. If you tie the justification for diversity to data, then what happens should the data change? If a new study showed that diverse companies were less profitable, is that a reason to abandon diversity? Absolutely not! If your justification isn’t tied to numbers, then it hardly matters what the numbers say (though it does admitedly feel good to have your stance backed up).

By the way, this is also why I don’t think it’s a good idea to “sell” design systems on the basis of efficiency and cost-savings if the real reason you’re building one is to foster better collaboration and creativity. The fundamental purpose of a design system needs to be shared, not swapped out based on who’s doing the talking.

Anyway, back to accessibility…

A marketplace, to me, feels like exactly the wrong kind of place for accessibility to defend its existence. By its nature, accessibility isn’t a mainstream issue. I mean, think about it: it’s good that accessibility issues affect a minority of people. The fewer, the better. But even if the number of people affected by accessibility were to trend downwards and dwindle, the importance of accessibility should remain unchanged. Accessibility is important regardless of the numbers.

Look, if I make a website for a client, I don’t offer accessibility as a line item with a price tag attached. I build in accessibility by default because it’s the right thing to do. The only way to ensure that accessibility doesn’t get negotiated away is to make sure it’s not up for negotiation.

So that’s why I feel uncomfortable seeing accessibility features in a popularity contest.

I think that markets are great. I think competition is great. But I don’t think it works for everything (like, could you imagine applying marketplace economics to healthcare or prisons? Nightmare!). I concur with Iain M. Banks:

The market is a good example of evolution in action; the try-everything-and-see-what- -works approach. This might provide a perfectly morally satisfactory resource-management system so long as there was absolutely no question of any sentient creature ever being treated purely as one of those resources.

If Igalia or Mozilla or Google or Apple implement an accessibility feature because they believe that accessibility is important and deserves prioritisation, that’s good. If they implement the same feature just because it received a lot of votes …that doesn’t strike me as a good thing.

I guess it doesn’t matter what the reason is as long as the end result is the same, right? But I suspect that what we’ll see is that the accessibility features up for bidding on Open Prioritization won’t be the winners.

Putting design principles into action

I was really looking forward to speaking at An Event Apart this year. I was going to be on the line-up for Seattle, Boston, and Minneapolis; three cities I really like.

At the start of the year, I decided to get a head-start on my new talk so I wouldn’t be too stressed out when the first event approached. I spent most of January and February going through the chaotic process of assembling a semi-coherent presentation out of a katamari of vague thoughts.

I was making good progress. Then The Situation happened. One by one, the in-person editions of An Event Apart were cancelled (quite rightly). But my talk preparation hasn’t been in vain. I’ll be presenting my talk at an online edition of An Event Apart on Monday, August 17th.

You should attend. Not for my talk, but for Ire’s talk on Future-Proof CSS which sounds like it was made for me:

In this talk, we’ll cover how to write CSS that stands the test of time. From progressive enhancement techniques to accessibility considerations, we’ll learn how to write CSS for 100 years in the future (and, of course, today).

My talk will be about design principles …kinda. As usual, it will be quite a rambling affair. At this point I almost take pride in evoking a reaction of “where’s he going with this?” during the first ten minutes of a talk.

When I do actually get around to the point of the talk—design principles—I ask whether it’s possible to have such a thing as universal principles. After all, the whole point of design principles is that they’re specific to an endeavour, whether that’s a company, an organisation, or a product.

I think that some principles are, if not universal, then at least very widely applicable. I’ve written before about two of my favourites: the robustness principle and the principle of least power:

There’s no shortage of principles, laws, and rules out there, and I find many of them very useful, but if I had to pick just two that are particularly applicable to my work, they would be the robustness principle and the rule of least of power.

What’s interesting about both of those principles is that they are imperative. They tell you how to act:

Be conservative in what you send, be liberal in what you accept.

Choose the least powerful language suitable for a given purpose.

Other princples are imperative, but they tell you what not to do. Take the razors of Occam and Hanlon, for example:

Entities are not to be multiplied without necessity.

Never attribute to malice that which is adequately explained by stupidity.

But these imperative principles are exceptions. The vast majority of “universal” principles take the form of laws that are observations. They describe the state of the world without providing any actions to take.

There’s Hofstadter’s Law, for example:

It always takes longer than you expect, even when you take into account Hofstadter’s Law.

Or Clarke’s third law:

Any sufficiently advanced technology is indistinguishable from magic.

By themselves, these observational laws are interesting but they leave it up to you to decide on a course of action. On the other hand, imperative principles tell you what to do but don’t tell you why.

It strikes me that it could be fun (and useful) to pair up observational and imperative principles:

Because of observation A, apply action B.

For example:

Because of Murphy’s Law, apply the principle of least power.

Or in its full form:

Because anything that can go wrong will go wrong, choose the least powerful language suitable for a given purpose.

I feel like the Jevons paradox is another observational principle that should inform our work on the web:

The Jevons paradox occurs when technological progress increases the efficiency with which a resource is used, but the rate of consumption of that resource rises because of increasing demand.

For example, even though devices, browsers, and networks are much, much better now than they were, say, ten years ago, that doesn’t mean that websites have become better or faster. Instead, it’s precisely because there’s more power available that people think nothing of throwing megabytes of JavaScript at users. See Scott’s theory that 5G Will Definitely Make the Web Slower, Maybe:

JavaScript size has ballooned as networks have improved.

This problem would be addressed if web developers were more conservative in what they sent. The robustness principle in action.

Because of the Jevons paradox, apply the robustness principle.

Admittedly, the expanded version of that is far too verbose:

Because technological progress increases the efficiency with which a resource is used, but the rate of consumption of that resource rises because of increasing demand, be conservative in what you send, be liberal in what you accept.

I’m sure there are more and better pairings to be made: an observational principle to tell you why you should take action, and an imperative principle to tell you what action you should take.

Custom properties

I made the website for the Clearleft podcast last week. The design is mostly lifted straight from the rest of the Clearleft website. The main difference is the masthead. If the browser window is wide enough, there’s a background image on the right hand side.

I mostly added that because I felt like the design was a bit imbalanced without something there. On the home page, it’s a picture of me. Kind of cheesy. But the image can be swapped out. On other pages, there are different photos. All it takes is a different class name on that masthead.

I thought about having the image be completely random (and I still might end up doing this). I’d need to use a bit of JavaScript to choose a class name at random from a list of possible values. Something like this:

var names = ['jeremy','katie','rich','helen','trys','chris'];
var name = names[Math.floor(Math.random() * names.length)];

(You could paste that into the dev tools console to see it in action on the podcast site.)

Then I read something completely unrelated. Cassie wrote a fantastic article on her site called Making lil’ me - part 1. In it, she describes how she made the mouse-triggered animation of her avatar in the footer of her home page.

It’s such a well-written technical article. She explains the logic of what she’s doing, and translates that logic into code. Then, after walking you through the native code, she shows how you could use the Greeksock library to achieve the same effect. That’s the way to do it! Instead of saying, “Here’s a library that will save you time—don’t worry about how it works!”, she’s saying “Here’s it works without a library; here’s how it works with a library; now you can make an informed choice about what to use.” It’s a very empowering approach.

Anyway, in the article, Cassie demonstrates how you can use custom properties as a bridge between JavaScript and CSS. JavaScript reads the mouse position and updates some custom properties accordingly. Those same custom properties are used in CSS for positioning. Voila! Now you’ve got the position of an element responding to mouse movements.

That’s what made me think of the code snippet I wrote above to update a class name from JavaScript. I automatically thought of updating a class name because, frankly, that’s how I’ve always done it. I’d say about 90% of the DOM scripting I’ve ever done involves toggling the presence of class values: accordions, fly-out menus, tool-tips, and other progressive disclosure patterns.

That’s fine. But really, I should try to avoid touching the DOM at all. It can have performance implications, possibly triggering unnecessary repaints and reflows.

Now with custom properties, there’s a direct line of communication between JavaScript and CSS. No need to use the HTML as a courier.

This made me realise that I need to be aware of automatically reaching for a solution just because that’s the way I’ve done something in the past. I should step back and think about the more efficient solutions that are possible now.

It also made me realise that “CSS variables” is a very limiting way of thinking about custom properties. The fact that they can be updated in real time—in CSS or JavaScript—makes them much more powerful than, say, Sass variables (which are more like constants).

But I too have been guilty of underselling them. I almost always refer to them as “CSS custom properties” …but a lot of their potential comes from the fact that they’re not confined to CSS. From now on, I’m going to try calling them custom properties, without any qualification.

Dark mode revisited

I added a dark mode to my website a while back. It was a fun thing to do during Indie Web Camp Amsterdam last year.

I tied the colour scheme to the operating system level. If you choose a dark mode in your OS, my website will adjust automatically thanks to the prefers-color-scheme: dark media query.

But I’ve seen notes from a few friends, not about my site specifically, but about how they like having an explicit toggle for dark mode (as well as the media query). Whenever I read those remarks, I’d think “I’m really not sure I’ve got time to deal with adding that kind of toggle to my site.”

But then I realised, “Jeremy, you absolute muffin! You’ve had a theme switcher on your website for almost two decades now!”

Doh! I had forgotten about that theme switcher. It dates back to the early days of CSS. I wanted my site to be a demonstration of how you could apply different styles to the same underlying markup (this was before the CSS Zen Garden came along). Those themes are very dated now, but if you like you can view my site with a Zeldman theme or a sci-fi theme.

To offer a dark-mode theme for my site, all I had to do was take the default stylesheet, pull out the custom properties from the prefers-color-scheme: dark media query, and done. It took less than five minutes.

So if you want to view my site in dark mode, it’s one of the options in the “Customise” dropdown on every page of the website.

CSS custom properties and the cascade

When I wrote about programming CSS to perform Sass colour functions I said this about the brilliant Lea Verou:

As so often happens when I’m reading something written by Lea—or seeing her give a talk—light bulbs started popping over my head (my usual response to Lea’s knowledge bombs is either “I didn’t know you could do that!” or “I never thought of doing that!”).

Well, it happened again. This time I was reading her post about hybrid positioning with CSS variables and max() . But the main topic of the post wasn’t the part that made go “Huh! I never knew that!”. Towards the end of her article she explained something about the way that browsers evaluate CSS custom properties:

The browser doesn’t know if your property value is valid until the variable is resolved, and by then it has already processed the cascade and has thrown away any potential fallbacks.

I’m used to being able to rely on the cascade. Let’s say I’m going to set a background colour on paragraphs:

p {
  background-color: red;
  background-color: color(display-p3 1 0 0);

First I’ve set a background colour using a good ol’ fashioned keyword, supported in browsers since day one. Then I declare the background colour using the new-fangled color() function which is supported in very few browsers. That’s okay though. I can confidently rely on the cascade to fall back to the earlier declaration. Paragraphs will still have a red background colour.

But if I store the background colour in a custom property, I can no longer rely on the cascade.

:root {
  --myvariable: color(display-p3 1 0 0);
p {
  background-color: red;
  background-color: var(--myvariable);

All I’ve done is swapped out the hard-coded color() value for a custom property but now the browser behaves differently. Instead of getting a red background colour, I get the browser default value. As Lea explains:

…it will make the property invalid at computed value time.

The spec says:

When this happens, the computed value of the property is either the property’s inherited value or its initial value depending on whether the property is inherited or not, respectively, as if the property’s value had been specified as the unset keyword.

So if a browser doesn’t understand the color() function, it’s as if I’ve said:

background-color: unset;

This took me by surprise. I’m so used to being able to rely on the cascade in CSS—it’s one of the most powerful and most useful features in this programming language. Could it be, I wondered, that the powers-that-be have violated the principle of least surprise in specifying this behaviour?

But a note in the spec explains further:

Note: The invalid at computed-value time concept exists because variables can’t “fail early” like other syntax errors can, so by the time the user agent realizes a property value is invalid, it’s already thrown away the other cascaded values.

Ah, right! So first of all browsers figure out the cascade and then they evaluate custom properties. If a custom property evaluates to gobbledygook, it’s too late to figure out what the cascade would’ve fallen back to.

Thinking about it, this makes total sense. Remember that CSS custom properties aren’t like Sass variables. They aren’t evaluated once and then set in stone. They’re more like let than const. They can be updated in real time. You can update them from JavaScript too. It’s entirely possible to update CSS custom properties rapidly in response to events like, say, the user scrolling or moving their mouse. If the browser had to recalculate the cascade every time a custom property didn’t evaluate correctly, I imagine it would be an enormous performance bottleneck.

So even though this behaviour surprised me at first, it makes sense on reflection.

I’ve probably done a terrible job explaining the behaviour here, so I’ve made a Codepen. Although that may also do an equally terrible job.

(Thanks to Amber for talking through this with me and encouraging me to blog about it. And thanks to Lea for expanding my mind. Again.)

Programming CSS to perform Sass colour functions

I wrote recently about moving away from Sass to using native CSS features. I had this to say on the topic of mixins in Sass:

These can be very useful, but now there’s a lot that you can do just in CSS with calc(). The built-in darken() and lighten() mixins are handy though when it comes to colours.

I know we will be getting these in the future but we’re not there yet with CSS.

Anyway, I had all this in the back of my mind when I was reading Lea’s excellent feature in this month’s Increment: A user’s guide to CSS variables. She’s written about a really clever technique of combining custom properites with hsl() colour values for creating colour palettes. (See also: Una’s post on dynamic colour theming with pure CSS.)

As so often happens when I’m reading something written by Lea—or seeing her give a talk—light bulbs started popping over my head (my usual response to Lea’s knowledge bombs is either “I didn’t know you could do that!” or “I never thought of doing that!”).

I immediately set about implementing this technique over on The Session. The trick here is to use separate custom properties for the hue, saturation, and lightness parts of hsl() colour values. Then, when you want to lighten or darken the colour—say, on hover—you can update the lightness part.

I’ve made a Codepen to show what I’m doing.

Let’s say I’m styling a button element. I make custom propertes for hsl() values:

button {
  --button-colour-hue: 19;
  --button-colour-saturation: 82%;
  --button-colour-lightness: 38%;
  background-color: hsl(

For my buttons, I want the borders to be slightly darker than the background colour. When I was using Sass, I used the darken() function to this. Now I use calc(). Here’s how I make the borders 10% darker:

border-color: hsl(
  calc(var(--button-colour-lightness) - 10%)

That calc() function is substracting a percentage from a percentage: 38% minus 10% in this case. The borders will have a lightness of 28%.

I make the bottom border even darker and the top border lighter to give a feeling of depth.

On The Session there’s a “cancel” button style that’s deep red.

Here’s how I set its colour:

.cancel {
  --button-colour-hue: 0;
  --button-colour-saturation: 100%;
  --button-colour-lightness: 40%;

That’s it. The existing button declarations take care of assigning the right shades for the border colours.

Here’s another example. Site admins see buttons for some actions only available to them. I want those buttons to have their own colour:

.admin {
  --button-colour-hue: 45;
  --button-colour-saturation: 100%;
  --button-colour-lightness: 40%;

You get the idea. It doesn’t matter how many differently-coloured buttons I create, the effect of darkening or lightening their borders is all taken care of.

So it turns out that the lighten() and darken() functions from Sass are available to us in CSS by using a combination of custom properties, hsl(), and calc().

I’m also using this combination to lighten or darken background and border colours on :hover. You can poke around the Codepen if you want to see that in action.

I love seeing the combinatorial power of these different bits of CSS coming together. It really is a remarkably powerful programming language.

Hard to break

I keep thinking about some feedback that Cassie received recently.

She had delivered the front-end code for a project at Clearleft, and—this being Cassie we’re talking about—the code was rock solid. The client’s Quality Assurance team came back with the verdict that it was “hard to break.”

Hard to break. I love that. That might be the best summation I’ve heard for describing resilience on the web.

If there’s a corollary to resilient web design, it would be brittle web design. In a piece completely unrelated to web development, Jamais Cascio describes brittle systems:

When something is brittle, it’s susceptible to sudden and catastrophic failure.

That sounds like an inarguably bad thing. So why would anyone end up building something in a brittle way? Jamais Cascio continues:

Things that are brittle look strong, may even be strong, until they hit a breaking point, then everything falls apart.

Ah, there’s the rub! It’s not that brittle sites don’t work. They work just fine …until they don’t.

Brittle systems are solid until they’re not. Brittleness is illusory strength. Things that are brittle are non-resilient, sometimes even anti-resilient — they can make resilience more difficult.

Kilian Valkhof makes the same point when it comes to front-end development. For many, accessibility is an unknown unknown:

When you start out it’s you, notepad and a browser against the world. You open up that notepad, and you type

<div onclick="alert('hello world');">Click me!</div>

You fire up your browser, you click your div and …it works! It just works! Awesome. You open up the devtools. No errors. Well done! Clearly you did a good job. On to the next thing.

At the surface level, there’s no discernable difference between a resilient solution and a brittle one:

For all sorts of reasons, both legitimate and, as always, weird browser legacy reasons, a clickable div will mostly work. Well enough to fool someone starting out anyway.

If everything works, how would they know it kinda doesn’t?

Killian goes on to suggest ways to try to make this kind of hidden brittleness more visible.

Furthermore we could envision a browser that is much stricter when developing.

This something I touched on when I was talking about web performance with Gerry on his podcast:

There’s a disconnect in the process we go through when we’re making something, and then how that thing is experienced when it’s actually on the web, which is dependent on network speeds and processing speeds and stuff.

I spend a lot of time wondering why so many websites are badly built. Sure, there’s a lot can be explained by misaligned priorities. And it could just be an expression of Sturgeon’s Law—90% of websites are crap because 90% of everything is crap. But I’ve also come to realise that even though resilience is the antithesis to brittleness, they both share something in common: they’re invisible.

We have a natural bias towards what’s visible. Being committed to making sure something is beautiful to behold is, in some ways, the easy path to travel. But being committed to making sure something is also hard to break? That takes real dedication.

Sass and clamp

CSS got some pretty nifty features recently. There’s the min() and max() functions. If you use them for, say, width you can use one rule where previously you would’ve needed to use two (a width declaration followed by either min-width or max-width). But they can also be applied to font-size! That’s very nifty—we’ve never had min-font-size or max-font-size properties.

There’s also the clamp() function. That allows you to set a minimum size, a default size, and a maximum size. Again, it can be used for lengths, like width, or for font-size.

Over on, I’ve had some media queries in place for a while now that would increase the font-size for larger screens. It’s nothing crucial, just a nice-to-have so that on wide screens, the font is bumped up accordingly. I realised I could replace all those media queries with one clamp() statement, thanks to the vw (viewport width) unit:

font-size: clamp(1rem, 1.333vw, 1.5rem);

By default, the font-size is 1.333vw (1.333% of the viewport width), but it will never get smaller than 1rem and it will never get larger than 1.5rem.

That works, but there’s a bit of an issue with using raw vw units like that. If someone is on a wide screen and they try to adjust the font size, nothing will happen. The viewport width doesn’t change when you bump the font size up or down.

The solution is to mix in some kind of unit that does respond to the font size being bumped up or down (like, say, the rem unit). Handily, clamp() allows you to combine units, just like calc(). So I can do this:

font-size: clamp(1rem, 0.5rem + 0.666vw, 1.5rem);

The result is much the same as my previous rule, but now—thanks to the presence of that 0.5rem value—the font size responds to being adjusted by the user.

You could use a full 1rem in that default value:

font-size: clamp(1rem, 1rem + 0.333vw, 1.5rem);

…but if you do that, the minimum size (1rem) will never be reached—the default value will always be larger. So in effect it’s no different than saying:

font-size: min(1.rem + 0.333vw, 1.5rem);

I mentioned this to Chris just the other day.

Anyway, I got the result I wanted. I wanted the font size to stay at the browser default size (usually 16 pixels) until the screen was larger than around 1200 pixels. From there, the font size gets gradually bigger, until it hits one and a half times the browser default (which would be 24 pixels if the default size started at 16). I decided to apply it to the :root element (which is html) using percentages:

:root {
  font-size: clamp(100%, 50% + 0.666vw, 150%);

(My thinking goes like this: if we take a screen width of 1200 pixels, then 1vw would be 12 pixels: 1200 divided by 100. So for a font size of 16 pixels, that would be 1.333vw. But because I’m combining it with half of the default font size—50% of 16 pixels = 8 pixels—I need to cut the vw value in half as well: 50% of 1.333vw = 0.666vw.)

So I’ve got the CSS rule I want. I dropped it in to the top of my file and…

I got an error.

There was nothing wrong with my CSS. The problem was that I was dropping it into a Sass file (.scss).

Perhaps I am showing my age. Do people even use Sass any more? I hear that post-processors usurped Sass’s dominance (although no-one’s ever been able to explain to me why they’re different to pre-processers like Sass; they both process something you’ve written into something else). Or maybe everyone’s just writing their CSS in JS now. I hear that’s a thing.

The Session is a looooong-term project so I’m very hesitant to use any technology that won’t stand the test of time. When I added Sass into the mix, back in—I think—2012 or so, I wasn’t sure whether it was the right thing to do, from a long-term perspective. But it did offer some useful functionality so I went ahead and used it.

Now, eight years later, it was having a hard time dealing with the new clamp() function. Specifically, it didn’t like the values being calculated through the addition of multiple units. I think it was clashing with Sass’s in-built ability to add units together.

I started to ask myself whether I should still be using Sass. I looked at which features I was using…

Variables. Well, now we’ve got CSS custom properties, which are even more powerful than Sass variables because they can be updated in real time. Sass variables are like const. CSS custom properties are like let.

Mixins. These can be very useful, but now there’s a lot that you can do just in CSS with calc(). The built-in darken() and lighten() mixins are handy though when it comes to colours.

Nesting. I’ve never been a fan. I know it can make the source files look tidier but I find it can sometimes obfuscate what you’re final selectors are going to look like. So this wasn’t something I was using much any way.

Multiple files. Ah! This is the thing I would miss most. Having separate .scss files for separate interface elements is very handy!

But globbing a bunch of separate .scss files into one .css file isn’t really a Sass task. That’s what build tools are for. In fact, that’s what I was already doing with my JavaScript files; I write them as individual .js files that then get concatenated into one .js file using Grunt.

(Yes, this project uses Grunt. I told you I was showing my age. But, you know what? It works. Though seeing as I’m mostly using it for concatenation, I could probably replace it with a makefile. If I’m going to use old technology, I might as well go all the way.)

I swapped out Sass variables for CSS custom properties, mixins for calc(), and removed what little nesting I was doing. Then I stripped the Sass parts out of my Grunt file and replaced them with some concatenation and minification tasks. All of this makes no difference to the actual website, but it means I’ve got one less dependency …and I can use clamp()!

Remember a little while back when I was making a dark mode for my site? I made this observation:

Let’s just take a moment here to pause and reflect on the fact that we can now use CSS to create all sorts of effects that previously required a graphic design tool like Photoshop.

It feels like something similar has happened with tools like Sass. Sass was the hare. CSS is the tortoise. Sass blazed the trail, but now native CSS can achieve much the same result.

It’s like when we used to need something like jQuery to do DOM Scripting succinctly using CSS selectors. Then we got things like querySelector() in JavaScript so we no longer needed the trailblazer.

I’ve said it before and I’ll say it again, the goal of any good library should be to get so successful as to make itself redundant. That is, the ideas and functionality provided by the tool are so useful and widely adopted that the native technologies—HTML, CSS, and JavaScript—take their cue from those tools.

You could argue that this is what happened with Flash. It certainly happened with jQuery and Sass. I’m pretty sure we’ll see the same cycle play out with frameworks like React.

User agents

I was on the podcast A Question Of Code recently. It was fun! The podcast is aimed at people who are making a career change into web development, so it’s right up my alley.

I sometimes get asked about what a new starter should learn. On the podcast, I mentioned a post I wrote a while back with links to some great resources and tutorials. As I said then:

For web development, start with HTML, then CSS, then JavaScript (and don’t move on to JavaScript too quickly—really get to grips with HTML and CSS first).

That’s assuming you want to be a good well-rounded web developer. But it might be that you need to get a job as quickly as possible. In that case, my advice would be very different. I would advise you to learn React.

Believe me, I take no pleasure in giving that advice. But given the reality of what recruiters are looking for, knowing React is going to increase your chances of getting a job (something that’s reflected in the curricula of coding schools). And it’s always possible to work backwards from React to the more fundamental web technologies of HTML, CSS, and JavaScript. I hope.

Regardless of your initial route, what’s the next step? How do you go from starting out in web development to being a top-notch web developer?

I don’t consider myself to be a top-notch web developer (far from it), but I am very fortunate in that I’ve had the opportunity to work alongside some tippety-top-notch developers at ClearleftTrys, Cassie, Danielle, Mark, Graham, Charlotte, Andy, and Natalie.

They—and other top-notch developers I’m fortunate to know—have something in common. They prioritise users. Sure, they’ll all have their favourite technologies and specialised areas, but they don’t lose sight of who they’re building for.

When you think about it, there’s quite a power imbalance between users and developers on the web. Users can—ideally—choose which web browser to use, and maybe make some preference changes if they know where to look, but that’s about it. Developers dictate everything else—the technology that a website will use, the sheer amount of code shipped over the network to the user, whether the site will be built in a fragile or a resilient way. Users are dependent on developers, but developers don’t always act in the best interests of users. It’s a classic example of the principal-agent problem:

The principal–agent problem, in political science and economics (also known as agency dilemma or the agency problem) occurs when one person or entity (the “agent”), is able to make decisions and/or take actions on behalf of, or that impact, another person or entity: the “principal”. This dilemma exists in circumstances where agents are motivated to act in their own best interests, which are contrary to those of their principals, and is an example of moral hazard.

A top-notch developer never forgets that they are an agent, and that the user is the principal.

But is it realistic to expect web developers to be so focused on user needs? After all, there’s a whole separate field of user experience design that specialises in this focus. It hardly seems practical to suggest that a top-notch developer needs to first become a good UX designer. There’s already plenty to focus on when it comes to just the technology side of front-end development.

So maybe this is too simplistic a way of defining the principle-agent relationship between users and developers:

user :: developer

There’s something that sits in between, mediating that relationship. It’s a piece of software that in the world of web standards is even referred to as a “user agent”: the web browser.

user :: web browser :: developer

So if making the leap to understanding users seems too much of a stretch, there’s an intermediate step. Get to know how web browsers work. As a web developer, if you know what web browsers “like” and “dislike”, you’re well on the way to making great user experiences. If you understand the pain points for browser when they’re parsing and rendering your code, you’ve got a pretty good proxy for understanding the pain points that your users are experiencing.


It’s been fascinating to see how television programmes have adapted to The Situation. It’s like there’s been a weird inversion with the YouTube asthetic. Instead of YouTubers doing their utmost to emulate the look of professional television, now everyone on professional television looks like a YouTuber.

No more lighting or audio technicians. No more studio audiences. Heck, no more studios.

There are some kinds of TV programmes that are showing the strain. A lot of comedy formats just fall flat without the usual production values. But a lot of programmes work just fine. In fact, some of them might be better. Watching Mary Beard present Front Row Late from her house is an absolute delight. It feels more direct and honest without the artiface of a television studio. It kind of makes you wonder whether expensive production costs are really necessary when what you really care about is the content.

All of this is one big belaboured metaphor for websites.

In times of crisis, informational websites sometimes offer a “lite” version. Max has even made an emergency website kit:

The site contains only the bare minimum - no webfonts, no tracking, no unnecessary images. The entire thing should fit in a single HTTP request. It’s basically just a small, ultra-lean blog focused on maximum resilience and accessibility. The Service Worker takes it a step further from there so if you’ve visited the site once, the information is still accessible even if you lose network coverage.

Eric emphasises the importance of performance in his post Get Static:

I’m thinking here of sites for places like health departments (and pretty much all government services), hospitals and clinics, utility services, food delivery and ordering, and I’m sure there are more that haven’t occurred to me.  As much as you possibly can, get it down to static HTML and CSS and maybe a tiny bit of enhancing JS, and pare away every byte you can.

Tom Loosemore offers this advice to teams building new coronavirus services:

  1. Get a 4 year-old Android phone, and use it as your test/demo device.
  2. is your friend.
  3. Full React isn’t your friend if it makes your service slow & inaccessible

Remember: This is for everyone.

Indeed, are usually a paragon of best practices in just about any situation. But they dropped the ball recently, as Matthew attests: is a static site, fetching and displaying remote data. It is also a 100% client-side JavaScript React site. is 238K vs 770K (basics) on load. I’ve removed about 550K of JavaScript. It seems to work the same.

As Tom says:

One sign that your website isn’t meeting the needs of all your users is when Matthew Somerville gets sufficiently grumpy about it to do a proper version himself.

It’s true enough that Matthew excels at creating lightweight, accessible versions of services that are too bloated or buggy to use. His accessible Odeon project from back in the day is legendary. And I use his slimline version of the National Rail website all the time:—it’s a terrificly performant progressive web app.

It’s thankless work though. It flies in the face of everything considered “modern” web development. (If you want to know the cost of “modern” framework-driven JavaScript-first web development, Tim has the numbers.) But Matthew is kind of a hero to me. I wish more developers would follow his example.

Maybe now, with this rush to make lightweight versions of valuable services, we might stop and reflect on whether we ever really needed all those added extras in the first place.

Hope springs eternal.

Update: Matthew has written about his process in Looking at

Future Sync 2020

I was supposed to be in Plymouth yesterday, giving the opening talk at this year’s Future Sync conference. Obviously, that train journey never happened, but the conference did.

The organisers gave us speakers the option of pre-recording our talks, which I jumped on. It meant that I wouldn’t be reliant on a good internet connection at the crucial moment. It also meant that I was available to provide additional context—mostly in the form of a deluge of hyperlinks—in the chat window that accompanied the livestream.

The whole thing went very smoothly indeed. Here’s the video of my talk. It was The Layers Of The Web, which I’ve only given once before, at Beyond Tellerrand Berlin last November (in the Before Times).

As well as answering questions in the chat room, people were also asking questions in But rather than answering those questions there, I was supposed to respond in a social medium of my choosing. I chose my own website, with copies syndicated to Twitter.

Here are those questions and answers…

The first few questions were about last years’s CERN project, which opens the talk:

Based on what you now know from the CERN 2019 WorldWideWeb Rebuild project—what would you have done differently if you had been part of the original 1989 Team?

I responded:

Actually, I think the original WWW project got things mostly right. If anything, I’d correct what came later: cookies and JavaScript—those two technologies (which didn’t exist on the web originally) are the source of tracking & surveillance.

The one thing I wish had been done differently is I wish that JavaScript were a same-origin technology from day one:

Next question:

How excited were you when you initially got the call for such an amazing project?

My predictable response:

It was an unbelievable privilege! I was so excited the whole time—I still can hardly believe it really happened!

Later in the presentation, I talked about service workers and progressive web apps. I got a technical question about that:

Is there a limit to the amount of local storage a PWA can use?

I answered:

Great question! Yes, there are limits, but we’re generally talking megabytes here. It varies from browser to browser and depends on the available space on the device.

But files stored using the Cache API are less likely to be deleted than files stored in the browser cache.

More worrying is the announcement from Apple to only store files for a week of browser use:

Finally, there was a question about the over-arching theme of the talk…

Great talk, Jeremy. Do you encounter push-back when using the term “Progressive Enhancement”?

My response:

Yes! …And that’s why I never once used the phrase “progressive enhancement” in my talk. 🙂

There’s a lot of misunderstanding of the term. Rather than correct it, I now avoid it:

Instead of using the phrase “progressive enhancement”, I now talk about the benefits and effects of the technique: resilience, universality, etc.

Future Sync Distributed 2020

Web Share API test

Remember a while back I wrote about some odd behaviour with the Web Share API in Safari on iOS?

When the share() method is triggered, iOS provides multiple ways of sharing: Messages, Airdrop, email, and so on. But the simplest option is the one labelled “copy”, which copies to the clipboard.

Here’s the thing: if you’ve provided a text parameter to the share() method then that’s what’s going to get copied to the clipboard—not the URL.

That’s a shame. Personally, I think the url field should take precedence.

Tess filed a bug soon after, which was very gratifying to see.

Now Phil has put together a test case:

  1. Share URL, title, and text
  2. Share URL and title
  3. Share URL and text

Very handy! The results (using the “copy” to clipboard action) are somewhat like rock, paper, scissors:

  • URL beats title,
  • text beats URL,
  • nothing beats text.

So it’s more like rock, paper, high explosives.

Apple’s attack on service workers

Apple aren’t the best at developer relations. But, bad as their communications can be, I’m willing to cut them some slack. After all, they’re not used to talking with the developer community.

John Wilander wrote a blog post that starts with some excellent news: Full Third-Party Cookie Blocking and More. Safari is catching up to Firefox and disabling third-party cookies by default. Wonderful! I’ve had third-party cookies disabled for a few years now, and while something occassionally breaks, it’s honestly a pretty great experience all around. Denying companies the ability to track users across sites is A Good Thing.

In the same blog post, John said that client-side cookies will be capped to a seven-day lifespan, as previously announced. Just to be clear, this only applies to client-side cookies. If you’re setting a cookie on the server, using PHP or some other server-side language, it won’t be affected. So persistent logins are still doable.

Then, in an audacious example of burying the lede, towards the end of the blog post, John announces that a whole bunch of other client-side storage technologies will also be capped to seven days. Most of the technologies are APIs that, like cookies, can be used to store data: Indexed DB, Local Storage, and Session Storage (though there’s no mention of the Cache API). At the bottom of the list is this:

Service Worker registrations

Okay, let’s clear up a few things here (because they have been so poorly communicated in the blog post)…

The seven day timer refers to seven days of Safari usage, not seven calendar days (although, given how often most people use their phones, the two are probably interchangable). So if someone returns to your site within a seven day period of using Safari, the timer resets to zero, and your service worker gets a stay of execution. Lucky you.

This only applies to Safari. So if your site has been added to the home screen and your web app manifest has a value for the “display” property like “standalone” or “full screen”, the seven day timer doesn’t apply.

That piece of information was missing from the initial blog post. Since the blog post was updated to include this clarification, some people have taken this to mean that progressive web apps aren’t affected by the upcoming change. Not true. Only progressive web apps that have been added to the home screen (and that have an appropriate “display” value) will be spared. That’s a vanishingly small percentage of progressive web apps, especially on iOS. To add a site to the home screen on iOS, you need to dig and scroll through the share menu to find the right option. And you need to do this unprompted. There is no ambient badging in Safari to indicate that a site is installable. Chrome’s install banner isn’t perfect, but it’s better than nothing.

Just a reminder: a progressive web app is a website that

  • runs on HTTPS,
  • has a service worker,
  • and a web manifest.

Adding to the home screen is something you can do with a progressive web app (or any other website). It is not what defines progressive web apps.

In any case, this move to delete service workers after seven days of using Safari is very odd, and I’m struggling to find the connection to the rest of the blog post, which is about technologies that can store data.

As I understand it, with the crackdown on setting third-party cookies, trackers are moving to first-party technologies. So whereas in the past, a tracking company could tell its customers “Add this script element to your pages”, now they have to say “Add this script element and this script file to your pages.” That JavaScript file can then store a unique idenitifer on the client. This could be done with a cookie, with Local Storage, or with Indexed DB, for example. But I’m struggling to understand how a service worker script could be used in this way. I’d really like to see some examples of this actually happening.

The best explanation I can come up with for this move by Apple is that it feels like the neatest solution. That’s neat as in tidy, not as in nifty. It is definitely not a nifty solution.

If some technologies set by a specific domain are being purged after seven days, then the tidy thing to do is purge all technologies from that domain. Service workers are getting included in that dragnet.

Now, to be fair, browsers and operating systems are free to clean up storage space as they see fit. Caches, Local Storage, Indexed DB—all of those are subject to eventually getting cleaned up.

So I was curious. Wanting to give Apple the benefit of the doubt, I set about trying to find out how long service worker registrations currently last before getting deleted. Maybe this announcement of a seven day time limit would turn out to be not such a big change from current behaviour. Maybe currently service workers last for 90 days, or 60, or just 30.


There was no time limit previously.

This is not a minor change. This is a crippling attack on service workers, a technology specifically designed to improve the user experience for return visits, whether it’s through improved performance or offline access.

I wouldn’t be so stunned had this announcement come with an accompanying feature that would allow Safari users to know when a website is a progressive web app that can be added to the home screen. But Safari continues to ignore the existence of progressive web apps. And now it will actively discourage people from using service workers.

If you’d like to give feedback on this ludicrous development, you can file a bug (down in the cellar in the bottom of a locked filing cabinet stuck in a disused lavatory with a sign on the door saying “Beware of the Leopard”).

No doubt there will still be plenty of Apple apologists telling us why it’s good that Safari has wished service workers into the cornfield. But make no mistake. This is a terrible move by Apple.

I will say this though: given The Situation we’re all living in right now, some good ol’ fashioned Hot Drama by a browser vendor behaving badly feels almost comforting.

Oh, embed!

I wrote yesterday about how messing about on your own website can be a welcome distraction. I did some tinkering with on the weekend that you might be interested in.

Let me set the scene…

I’ve started recording and publishing a tune a day. I grab my mandolin, open up Quicktime and make a movie of me playing a jig, a reel, or some other type of Irish tune. I include a link to that tune on The Session and a screenshot of the sheet music for anyone who wants to play along. And I embed the short movie clip that I’ve uploaded to YouTube.

Now it’s not the first time I’ve embedded YouTube videos into my site. But with the increased frequency of posting a tune a day, the front page of ended up with multiple embeds. That is not good for performance—my Lighthouse score took quite a hit. Worst of all, if a visitor doesn’t end up playing an embedded video, all of the markup, CSS, and JavaScript in the embedded iframe has been delivered for nothing.

Meanwhile over on The Session, I’ve got a strategy for embedding YouTube videos that’s better for performance. Whenever somebody posts a link to a video on YouTube, the thumbnail of the video is embedded. Only when you click the thumbnail does that image get swapped out for the iframe with the video.

That’s what I needed to do here on

First off, I should explain how I’m embedding things generally ‘round here. Whenever I post a link or a note that has a URL in it, I run that URL through a little PHP script called getEmbedCode.php.

That code checks to see if the URL is from a service that provides an oEmbed endpoint. A what-Embed? oEmbed!

oEmbed is like a minimum viable read-only API. It was specced out by Leah and friends years back. You ping a URL like this:

In this case is the endpoint and url is the value of a URL from that provider. Here’s a real life example from YouTube:

So is the endpoint and url is the address of any video on YouTube.

You get back some JSON with a pre-defined list of values like title and html. That html payload is the markup for your embed code.

By default, YouTube sends back markup like this:

allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"

But now I want to use an img instead of an iframe. One of the other values returned is thumbnail_url. That’s the URL of a thumbnail image that looks something like this:

In fact, once you know the ID of a YouTube video (the ?v= bit in a YouTube URL), you can figure out the path to multiple images of different sizes:

(Although that last one—maxresdefault.jpg—might not work for older videos.)

Okay, so I need to extract the ID from the YouTube URL. Here’s the PHP I use to do that:

parse_str(parse_url($url, PHP_URL_QUERY), $arguments);
$id = $arguments['v'];

Then I can put together some HTML like this:

<a class="videoimglink" href="'.$url.'">
<img width="100%" loading="lazy"
srcset="'.$id.'/mqdefault.jpg 320w,'.$id.'/hqdefault.jpg 480w,'.$id.'/maxresdefault.jpg 1280w

Now I’ve got a clickable responsive image that links through to the video on YouTube. Time to enhance. I’m going to add a smidgen of JavaScript to listen for a click on that link.

Over on The Session, I’m using addEventListener but here on I’m going to be dirty and listen for the event directly in the markup using the onclick attribute.

When the link is clicked, I nuke the link and the image using innerHTML. This injects an iframe where the link used to be (by updating the innerHTML value of the link’s parentNode).

this.parentNode.innerHTML='<iframe src='.$id.'?autoplay=1></iframe>'"

But notice that I’m not using the default YouTube URL for the iframe. That would be:

Instead I’m swapping out the domain for

I can’t remember where I first came across this undocumented parallel version of YouTube that has, yes, you guessed it, no cookies. It turns out that, not only is the default YouTube embed code bad for performance, it is—unsurprisingly—bad for privacy too. So the domain can protect your site’s visitors from intrusive tracking. Pass it on.

Anyway, I’ve got the markup I want now:

<a class="videoimglink" href=""
this.parentNode.innerHTML='<iframe src=></iframe>'">
<img width="100%" loading="lazy"
alt="The Banks Of Lough Gowna (jig) on mandolin"
srcset=" 320w, 480w, 1280w

The functionality is all there. But I want to style the embedded images to look more like playable videos. Time to break out some CSS (this is why I added the videoimglink class to the YouTube link).

.videoimglink {
    display: block;
    position: relative;

I’m going to use generated content to create a play button icon. Because I can’t use generated content on an img element, I’m applying these styles to the containing .videoimglink a element.

.videoimglink::before {
    content: '▶';

I was going to make an SVG but then I realised I could just be lazy and use the unicode character instead.

Right. Time to draw the rest of the fucking owl:

.videoimglink::before {
    content: '▶';
    display: inline-block;
    position: absolute;
    background-color: var(--background-color);
    color: var(--link-color);
    border-radius: 50%;
    width: 10vmax;
    height: 10vmax;
    top: calc(50% - 5vmax);
    left: calc(50% - 5vmax);
    font-size: 6vmax;
    text-align: center;
    text-indent: 1vmax;
    opacity: 0.5;

That’s a bunch of instructions for sizing and positioning. I’d explain it, but that would require me to understand it and frankly, I’m not entirely sure I do. But it works. I think.

With a translucent play icon positioned over the thumbnail, all that’s left is to add a :hover style to adjust the opacity:

.videoimglink:focus::before {
    opacity: 0.75;

Wheresoever thou useth :hover, thou shalt also useth :focus.

Okay. It’s good enough. Ship it!

The Banks Of Lough Gowna (jig) on mandolin

If you embed YouTube videos on your site, and you’d like to make them more performant, check out this custom element that Paul made: Lite YouTube Embed. And here’s a clever technique that uses the srcdoc attribute to get a similar result (but don’t forget to use the domain).

Lighthouse bookmarklet

I use Firefox. You should too. It’s fast, secure, and more privacy-focused than the leading browser from the big G.

When it comes to web development, the CSS developer tooling in Firefox is second-to-none. But when it comes to JavaScript and network-related debugging (like service workers), Chrome’s tools are currently better than Firefox’s (for now). For example, Chrome has a tab in its developer tools that lets you run Lighthouse on the currently open tab.

Yesterday, I got the Calibre newsletter, which always has handy performance-related links from Karolina. She pointed to a Lighthouse extension for Firefox. “Excellent!”, I thought, and I immediately installed it. But I had some qualms about installing a plug-in from Google into a browser from Mozilla, particularly as the plug-in page says:

This is not a Recommended Extension. Make sure you trust it before installing

Well, I gave it a go. It turns out that all it actually does is redirect to the online version of Lighthouse. “Hang on”, I thought. “This could just be a bookmarklet!”

So I immediately uninstalled the browser extension and made this bookmarklet:


Drag that up to your desktop browser’s bookmarks toolbar. Press it whenever you’re on a site that you want to test.

Telling the story of performance

At Clearleft, we’ve worked with quite a few clients on site redesigns. It’s always a fascinating process, particularly in the discovery phase. There’s that excitement of figuring out what’s currently working, what’s not working, and what’s missing completely.

The bulk of this early research phase is spent diving into the current offering. But it’s also the perfect time to do some competitor analysis—especially if we want some answers to the “what’s missing?” question.

It’s not all about missing features though. Execution is equally important. Our clients want to know how their users’ experience shapes up compared to the competition. And when it comes to user experience, performance is a huge factor. As Andy says, performance is a UX problem.

There’s no shortage of great tools out there for measuring (and monitoring) performance metrics, but they’re mostly aimed at developers. Quite rightly. Developers are the ones who can solve most performance issues. But that does make the tools somewhat impenetrable if you don’t speak the language of “time to first byte” and “first contentful paint”.

When we’re trying to show our clients the performance of their site—or their competitors—we need to tell a story.

Web Page Test is a terrific tool for measuring performance. It can also be used as a story-telling tool.

You can go to if you don’t need to tweak settings much beyond the typical site visit (slow 3G on mobile). Pop in your client’s URL and, when the test is done, you get a valuable but impenetrable waterfall chart. It’s not exactly the kind of thing I’d want to present to a client.

Fortunately there’s an attention-grabbing output from each test: video. Download the video of your client’s site loading. Then repeat the test with the URL of a competitor. Download that video too. Repeat for as many competitor URLs as you think appropriate.

Now take those videos and play them side by side. Presentation software like Keynote is perfect for showing multiple videos like this.

This is so much more effective than showing a table of numbers! Clients get to really feel the performance difference between their site and their competitors.

Running all those tests can take time though. But there are some other tools out there that can give a quick dose of performance information.

SpeedCurve recently unveiled Page Speed Benchmarks. You can compare the performance of sites within a particualar sector like travel, retail, or finance. By default, you’ll get a filmstrip view of all the sites loading side by side. Click through on each one and you can get the video too. It might take a little while to gather all those videos, but it’s quicker than using Web Page Test directly. And it might be that the filmstrip view is impactful enough for telling your performance story.

If, during your discovery phase, you find that performance is being badly affected by third-party scripts, you’ll need some way to communicate that. Request Map Generator is fantastic for telling that story in a striking visual way. Pop the URL in there and then take a screenshot of the resulting visualisation.

The beginning of a redesign project is also the time to take stock of current performance metrics so that you can compare the numbers after your redesign launches. is really great for tracking performance over time. You won’t get any videos but you will get some very appealing charts and graphs.

Web Page Test, Page Speed Benchmarks, and Request Map Generator are great for telling the story of what’s happening with performance right balances that with the story of performance over time.

Measuring performance is important. Communicating the story of performance is equally important.


Trys and James recently unveiled their Utopia project. They’ve been tinkering away at it behind the scenes for quite a while now.

You can check out the website and read the blog to get the details of how it accomplishes its goal:

Elegantly scale type and space without breakpoints.

I may well be biased, but I really like this project. I’ve been asking myself why I find it so appealing. Here are a few of the attributes of Utopia that strike a chord with me…

It’s collaborative

Collaboration is at the heart of Clearleft’s work. I know everyone says that, but we’ve definitely seen a direct correlation: projects with high levels of collaboration are invariably more successful than projects where people are siloed.

The genesis for Utopia came about after Trys and James worked together on a few different projects. It’s all too easy to let design and development splinter off into their own caves, but on these projects, Trys and James were working (literally) side by side. This meant that they could easily articulate frustrations to one another, and more important, they could easily share their excitement.

The end result of their collaboration is some very clever code. There’s an irony here. This code could be used to discourage collaboration! After all, why would designers and developers sit down together if they can just pass these numbers back and forth?

But I don’t think that Utopia will appeal to designers and developers who work in that way. Born in the spirit of collaboration, I suspect that it will mostly benefit people who value collaboration.

It’s intrinsic

If you’re a control freak, you may not like Utopia. The idea is that you specify the boundaries of what you’re trying to accomplish—minimum/maximum font sizes, minumum/maximum screen sizes, and some modular scales. Then you let the code—and the browser—do all the work.

On the one hand, this feels like surrending control. But on the other hand, because the underlying system is so robust, it’s a way of guaranteeing quality, even in situations you haven’t accounted for.

If someone asks you, “What size will the body copy be when the viewport is 850 pixels wide?”, your answer would have to be “I don’t know …but I do know that it will be appropriate.”

This feels like a very declarative way of designing. It reminds me of the ethos behind Andy and Heydon’s site, Every Layout. They call it algorithmic layout design:

Employing algorithmic layout design means doing away with @media breakpoints, “magic numbers”, and other hacks, to create context-independent layout components. Your future design systems will be more consistent, terser in code, and more malleable in the hands of your users and their devices.

See how breakpoints are mentioned as being a very top-down approach to layout? Remember the tagline for Utopia, which aims for fluid responsive design?

Elegantly scale type and space without breakpoints.

Unsurprisingly, Andy really likes Utopia:

As the co-author of Every Layout, my head nearly fell off from all of the nodding when reading this because this is the exact sort of approach that we preach: setting some rules and letting the browser do the rest.

Heydon describes this mindset as automating intent. I really like that. I think that’s what Utopia does too.

As Heydon said at Patterns Day:

Be your browser’s mentor, not its micromanager.

The idea is that you give it rules, you give it axioms or principles to work on, and you let it do the calculation. You work with the in-built algorithms of the browser and of CSS itself.

This is all possible thanks to improvements to CSS like calc, flexbox and grid. Jen calls this approach intrinsic web design. Last year, I liveblogged her excellent talk at An Event Apart called Designing Intrinsic Layouts.

Utopia feels like it has the same mindset as algorithmic layout design and intrinsic web design. Trys and James are building on the great work already out there, which brings me to the final property of Utopia that appeals to me…

It’s iterative

There isn’t actually much that’s new in Utopia. It’s a combination of existing techniques. I like that. As I said recently:

I’m a great believer in the HTML design principle, Evolution Not Revolution:

It is better to evolve an existing design rather than throwing it away.

First of all, Utopia uses the idea of modular scales in typography. Tim Brown has been championing this idea for years.

Then there’s the idea of typography being fluid and responsive—just like Jason Pamental has been speaking and writing about.

On the code side, Utopia wouldn’t be possible without the work of Mike Reithmuller and his breakthroughs on responsive and fluid typography, which led to Tim’s work on CSS locks.

Utopia takes these building blocks and combines them. So if you’re wondering if it would be a good tool for one of your projects, you can take an equally iterative approach by asking some questions…

Are you using fluid type?

Do your font-sizes increase in proportion to the width of the viewport? I don’t mean in sudden jumps with @media breakpoints—I mean some kind of relationship between font size and the vw (viewport width) unit. If so, you’re probably using some kind of mechanism to cap the minimum and maximum font sizes—CSS locks.

I’m using that technique on Resilient Web Design. But I’m not changing the relative difference between different sized elements—body copy, headings, etc.—as the screen size changes.

Are you using modular scales?

Does your type system have some kind of ratio that describes the increase in type sizes? You probably have more than one ratio (unlike Resilient Web Design). The ratio for small screens should probably be smaller than the ratio for big screens. But rather than jump from one ratio to another at an arbitrary breakpoint, Utopia allows the ratio to be fluid.

So it’s not just that font sizes are increasing as the screen gets larger; the comparative difference is also subtly changing. That means there’s never a sudden jump in font size at any time.

Are you using custom properties?

A technical detail this, but the magic of Utopia relies on two powerful CSS features: calc() and custom properties. These two workhorses are used by Utopia to generate some CSS that you can stick at the start of your stylesheet. If you ever need to make changes, all the parameters are defined at the top of the code block. Tweak those numbers and watch everything cascade.

You’ll see that there’s one—and only one—media query in there. This is quite clever. Usually with CSS locks, you’d need to have a media query for every different font size in order to cap its growth at the maximum screen size. With Utopia, the maximum screen size—100vw—is abstracted into a variable (a custom property). The media query then changes its value to be the upper end of your CSS lock. So it doesn’t matter how many different font sizes you’re setting: because they all use that custom property, one single media query takes care of capping the growth of every font size declaration.

If you’re already using CSS locks, modular scales, and custom properties, Utopia is almost certainly going to be a good fit for you.

If you’re not yet using those techniques, but you’d like to, I highly recommend using Utopia on your next project.


As you may have noticed, I’m a fan of progressive enhancement.

It’s not cool. It’s often at odds with “modern” web development, so I end up looking like an old man yelling at a cloud to get off my lawn. Or something.

At its heart though, progressive enhancement seems fairly uncontroversial and inoffensive to me. It’s an approach. A mindset. Here’s how I describe it in Resilient Web Design:

  1. Identify core functionality.
  2. Make that functionality available using the simplest possible technology.
  3. Enhance!

Progressive enhancement makes use of the principle of least power:

Choose the least powerful language suitable for a given purpose.

That’s step two of the three-step process. But the third step is vital.

I think a lot of the hostility towards progressive enhancement comes from a misunderstanding of that three-step process, perhaps thinking that it stops at step two. I’m sure that some have intrepreted progressive enhancement as preventing developers from using the latest and greatest technology. Nothing could be further from the truth!

Taking a layered approach to building on the web gives you permission to try cutting‐edge JavaScript APIs, regardless of how many or how few browsers currently implement them.

The most common misunderstanding of progressive enhancement is that it’s inherently about JavaScript. That’s not true. You can apply progressive enhancement at every step of front-end development: HTML, CSS, and JavaScript.

But because of JavaScript’s strict error-handling model (at least compared to HTML and CSS), it’s in the JavaScript layer that the lack of a progressive enhancement mindset is most often felt.

That’s why I was saddened by the rise of frameworks and mindsets that assume the availability of JavaScript. Single page apps generally follow this assumption. Everything is delivered via JavaScript: content, markup, styles, and behaviour.

This leads to a terrible situation for performance. The user is left staring at a blank screen, waiting for something—anything!—to appear. Browsers are optimised to stream HTML as soon as they can. Delivering your content via JavaScript rather than HTML means you’re not taking advantage of that optimisation. Your users suffer.

But I was very heartened when I saw the pendulum start to swing back the other way a bit…

Let’s say you’re using a JavaScript framework like React. But the reason you’re using it isn’t because you’re doing anything particularly complex in the browser involving state management. You might be using React because you really like the way it encourages modularity and componentisation.

A few years ago, making a single page app was pretty much the only way you could use React. For you as a developer to experience the benefits of modularity and componentisation, users had to pay the price in the payload (and fragility) of client-side JavaScript.

That’s no longer the case. Now that we can run JavaScript on the server, it’s possible to build in a modular, componentised way and still use progressive enhancement.

When I first heard about Gatsby and Next.js, I thought that was the selling point. Run React on the server; send pre-generated HTML down the wire to the user; then enhance with client-side JavaScript.

But that’s not exactly how it works. The pre-generated HTML isn’t functional. It still needs a bucketload of JavaScript before it can do anything. The actual process is: Run React on the server; send pre-generated HTML down the wire to the user; then send everything again but this time in JavaScript, bundled with the entire React library.

This leads to a situation for users that’s almost worse than before. Instead of staring at a blank screen, now they get HTML lickety-split—excellent! But if they try to interact with what’s on screen, they’ll find that nothing is working yet. Even worse, once the JavaScript is delivered, and is being parsed, they probably can’t even scroll—their device is too busy interpreting all that JavaScript. Your users suffer.

All your content is sent twice. First HTML is sent from the server. These days this is called “server-side rendering”, even though for decades the technical term was “serving a web page” (I’m pretty sure the rendering part happens in a browser). Then a JavaScript library—plus all your bespoke JavaScript—is loaded. Then all your content is loaded again as JSON.

So you’ve got a facade of an interface that you can’t actually interact with until a deluge of JavaScript has been loaded, parsed and executed. The term used for this stage of the process is “hydration”, which makes it sound more like a relaxing treatment from Gwyneth Paltrow than the horrible user experience it is.

The idea is that subsequent navigations—which will happen with Ajax—should be snappy. But the price has already been paid by then. The initial loading experience is jagged and frustrating.

Don’t get me wrong: server-side rendering is great …if what you’re sending from the server is functional. It’s the combination of hollow HTML sent from the server, followed by a huge browser-freezing dump of JavaScript that is an anti-pattern.

This use of server-side rendering followed by hydration feels like progressive enhancement, because it separates out the delivery of markup and scripts. But it’s missing the mindset.

The layered approach of progressive enhancement echoes the separation of concerns in the front-end stack: HTML, CSS, and JavaScript—each layer expressing more power. But while these concepts are related, they’re not interchangable. Separating out the layers of your tech stack isn’t necessarily progressive enhancement. If you have some HTML that relies on JavaScript to be useful, then there’s no benefit in separating that HTML into a separate payload. The HTML that you initially send down the wire needs to be functional (at least at a basic level) before the JavaScript arrives.

I was a little disappointed to see Kyle Simpson—who I admire greatly—conflate separation of concerns with progressive enhancement in his talk from JSCamp 2019:

This content is here. I can see it, and it’s even styled. But I can’t click on the damn button because nothing has loaded in the JavaScript layer yet.

Anybody experienced that where you’ve been on a web page and it’s not really fully functional yet? I can see something but I can’t actually make any usage of it yet.

These are all things that cropped out of our thought process that said: “Let’s build the web in layers. Let’s deliver it progressively in layers. Because that’s morally right. We call this progressive enhancement. And let’s not worry too much about all these potential user experience flaws that may happen.”

That’s a spot-on description of server-side rendering and hydration, but it’s a gross mischaracterisation of progressive enhancement.

That button that requires JavaScript to work? That should’ve been generated with JavaScript. (For example, if you’re building a complex web app, consider sending a read-only view down the wire in HTML—then add any interactive interface elements with JavaScript in the browser.)

If people are equating progressive enhancement with thoughtless server-side rendering and hydration, then I can see why they’d be hostile towards it.

Users would be better served with unprogressive non-enhancement:

You take some structured content, which follows the vertical flow of the document in a way that everyone understands.

Which people traverse easily by either dragging their scroll bar with their mouse, or operating the keyboard using the up and down keys, or using the spacebar.

Or if they’re using a touch device, simply flicking backwards and forwards in that easy way that we’ve all become used to. What you do is you take that, and you fucking well leave it alone.

Alas, that’s not what tools like Gatsby offer. The latest post on their blog is called Why Gatsby is better with JavaScript:

But what about sites or pages where there is no client-side interactivity? Even for those pages, Gatsby offers performance benefits by including JavaScript.

I beg to differ.

(By the way, that same blog post also initially tried to equate the performance hit of client-side JavaScript with the performance hit of images. Andy explains why that’s disingenuous.)

Hope is on the horizon for React in the form of partial hydration. I sincerely hope that it will become the default way of balancing server-side rendering with just-in-time client-side interaction.

The situation we have now is the worst of both worlds: server-side rendering followed by a tsunami of hydration. It has a whiff of progressive enhancement to it (because there’s a cosmetic separation of concerns) but it has none of the user benefits.

Browser defaults

I’ve been thinking about some of the default behaviours that are built into web browsers.

First off, there’s the decision that a browser makes if you enter a web address without a protocol. Let’s say you type in without specifying whether you’re looking for or

Browsers default to HTTP rather than HTTPS. Given that HTTP is older than HTTPS that makes sense. But given that there’s been such a push for TLS on the web, and the huge increase in sites served over HTTPS, I wonder if it’s time to reconsider that default?

Most websites that are served over HTTPS have an automatic redirect from HTTP to HTTPS (enforced with HSTS). There’s an ever so slight performance hit from that, at least for the very first visit. If, when no protocol is specified, browsers were to attempt to reach the HTTPS port first, we’d get a little bit of a speed improvement.

But would that break any existing behaviour? I don’t know. I guess there would be a bit of a performance hit in the other direction. That is, the browser would try HTTPS first, and when that doesn’t exist, go for HTTP. Sites served only over HTTP would suffer that little bit of lag.

Whatever the default behaviour, some sites are going to pay that performance penalty. Right now it’s being paid by sites that are served over HTTPS.

Here’s another browser default that Rob mentioned recently: the viewport meta tag:

I thought I might be able to get away with omitting meta name="viewport". Apparently not! Maybe someday.

This all goes back to the default behaviour of Mobile Safari when the iPhone was first released. Most sites wouldn’t display correctly if one pixel were treated as one pixel. That’s because most sites were built with the assumption that they would be viewed on monitors rather than phones. Only weirdos like me were building sites without that assumption.

So the default behaviour in Mobile Safari is assume a page width of 1024 pixels, and then shrink that down to fit on the screen …unless the developer over-rides that behaviour with a viewport meta tag. That default behaviour was adopted by other mobile browsers. I think it’s a universal default.

But the web has changed since the iPhone was released in 2007. Responsive design has swept the web. What would happen if mobile browsers were to assume width=device-width?

The viewport meta element always felt like a (proprietary) band-aid rather than a long-term solution—for one thing, it’s the kind of presentational information that belongs in CSS rather than HTML. It would be nice if we could bid it farewell.