Tags: bug



Tuesday, March 23rd, 2021

Service worker weirdness in Chrome

I think I’ve found some more strange service worker behaviour in Chrome.

It all started when I was checking out the very nice new redesign of WebPageTest. I figured while I was there, I’d run some of my sites through it. I passed in a URL from The Session. When the test finished, I noticed that the “screenshot” tab said that something was being logged to the console. That’s odd! And the file doing the logging was the service worker script.

I fired up Chrome (which isn’t my usual browser), and started navigating around The Session with dev tools open to see what appeared in the console. Sure enough, there was a failed fetch attempt being logged. The only time my service worker script logs anything is in the catch clause of fetching pages from the network. So Chrome was trying to fetch a web page, failing, and logging this error:

The service worker navigation preload request failed with a network error.

But all my pages were loading just fine. So where was the error coming from?

After a lot of spelunking and debugging, I think I’ve figured out what’s happening…

First of all, I’m making use of navigation preloads in my service worker. That’s all fine.

Secondly, the website is a progressive web app. It has a manifest file that specifies some metadata, including start_url. If someone adds the site to their home screen, this is the URL that will open.

Thirdly, Google recently announced that they’re tightening up the criteria for displaying install prompts for progressive web apps. If there’s no network connection, the site still needs to return a 200 OK response: either a cached copy of the URL or a custom offline page.

So here’s what I think is happening. When I navigate to a page on the site in Chrome, the service worker handles the navigation just fine. It also parses the manifest file I’ve linked to and checks to see if that start URL would load if there were no network connection. And that’s when the error gets logged.

I only noticed this behaviour because I had specified a query string on my start URL in the manifest file. Instead of a start_url value of /, I’ve set a start_url value of /?homescreen. And when the error shows up in the console, the URL being fetched is /?homescreen.

Crucially, I’m not seeing a warning in the console saying “Site cannot be installed: Page does not work offline.” So I think this is all fine. If I were actually offline, there would indeed be an error logged to the console and that start_url request would respond with my custom offline page. It’s just a bit confusing that the error is being logged when I’m online.

I thought I’d share this just in case anyone else is logging errors to the console in the catch clause of fetches and is seeing an error even when everything appears to be working fine. I think there’s nothing to worry about.

Update: Jake confirmed my diagnosis and agreed that the error is a bit confusing. The good news is that it’s changing. In Chrome Canary the error message has already been updated to:

DOMException: The service worker navigation preload request failed due to a network error. This may have been an actual network error, or caused by the browser simulating offline to see if the page works offline: see https://w3c.github.io/manifest/#installability-signals

Much better!

Thursday, March 11th, 2021

Saturday, January 16th, 2021

Enable/unmute WebAudio on iOS, even while mute switch is on

Remember when I wrote about Web Audio weirdness on iOS? Well, this is a nice little library that wraps up the same hacky solution that I ended up using.

It’s always gratifying when something you do—especially something that feels so hacky—turns out to be independently invented elsewhere.

Monday, December 21st, 2020

Web Audio API weirdness on iOS

I told you about how I’m using the Web Audio API on The Session to generate synthesised audio of each tune setting. I also said:

Except for some weirdness on iOS that I had to fix.

Here’s that weirdness…

Let me start by saying that this isn’t anything to do with requiring a user interaction (the Web Audio API insists on some kind of user interaction to prevent developers from having auto-playing sound on websites). All of my code related to the Web Audio API is inside a click event handler. This is a different kind of weirdness.

First of all, I noticed that if you pressed play on the audio player when your iOS device is on mute, then you don’t hear any audio. Seems logical, right? Except if using the same device, still set to mute, you press play on a video or audio element, the sound plays just fine. You can confirm this by going to Huffduffer and pressing play on any of the audio elements there, even when your iOS device is set on mute.

So it seems that iOS has different criteria for the Web Audio API than it does for audio or video. Except it isn’t quite that straightforward.

On some pages of The Session, as well as the audio player for tunes (using the Web Audio API) there are also embedded YouTube videos (using the video element). Press play on the audio player; no sound. Press play on the YouTube video; you get sound. Now go back to the audio player and suddenly you do get sound!

It’s almost like playing a video or audio element “kicks” the browser into realising it should be playing the sound from the Web Audio API too.

This was happening on iOS devices set to mute, but I was also getting reports of it happening on devices with the sound on. But it’s that annoyingly intermittent kind of bug that’s really hard to reproduce consistently. Sometimes the sound doesn’t play. Sometimes it does.

Following my theory that the browser needs a “kick” to get into the right frame of mind for the Web Audio API, I resorted to a messy little hack.

In the event handler for the audio player, I generate the “kick” by playing a second of silence using the JavaScript equivalent of the audio element:

var audio = new Audio('1-second-of-silence.mp3');

I’m not proud of that. It’s so hacky that I’ve even wrapped the code in some user-agent sniffing on the server, and I never do user-agent sniffing!

Still, if you ever find yourself getting weird but inconsistent behaviour on iOS using the Web Audio API, this nasty little hack could help.

Wednesday, August 5th, 2020

In a Land Before Dev Tools | Amber’s Website

A great little history lesson from Amber—ah, Firebug!

Wednesday, June 17th, 2020

Where did the focus go? | Amber’s Website

Amber documents a very handy bit of DOM scripting when it comes to debugging focus management: document.activeElement.

Tuesday, March 3rd, 2020

HTML: The Inaccessible Parts - daverupert.com

Well, this is a grim collection from Dave:

There are some cases where even using plain ol’ HTML causes accessibility problems. I get frustrated and want to quit web development whenever I read about these types of issues. Because if browsers can’t get this right, what hope is there for the rest of us.

It’s worth clicking through each link he lists—the situation is often much more nuanced than simply “Don’t use X.”

Tuesday, October 22nd, 2019

203221 – Web Share API: should prefer URL to text when both available

That unusual behaviour I wrote about with the Web Share API in Safari on iOS is now officially a bug—thanks, Tess!

Tuesday, July 2nd, 2019

Bridgy for Webmentions with Brotli—zachleat.com

This is good to know! Because of a bug in Google App Engine, Brid.gy won’t work for sites using Brotli compression on HTML.

The trimCache function in Going Offline …again

It seems that some code that I wrote in Going Offline is haunted. It’s the trimCache function.

First, there was the issue of a typo. Or maybe it’s more of a brainfart than a typo, but either way, there’s a mistake in the syntax that was published in the book.

Now it turns out that there’s also a problem with my logic.

To recap, this is a function that takes two arguments: the name of a cache, and the maximum number of items that cache should hold.

function trimCache(cacheName, maxItems) {

First, we open up the cache:

.then( cache => {

Then, we get the items (keys) in that cache:

.then(keys => {

Now we compare the number of items (keys.length) to the maximum number of items allowed:

if (keys.length > maxItems) {

If there are too many items, delete the first item in the cache—that should be the oldest item:


And then run the function again:

    trimCache(cacheName, maxItems)

A-ha! See the problem?

Neither did I.

It turns out that, even though I’m using then, the function will be invoked immediately, instead of waiting until the first item has been deleted.

Trys helped me understand what was going on by making a useful analogy. You know when you use setTimeout, you can’t put a function—complete with parentheses—as the first argument?

window.setTimeout(doSomething(someValue), 1000);

In that example, doSomething(someValue) will be invoked immediately—not after 1000 milliseconds. Instead, you need to create an anonymous function like this:

window.setTimeout( function() {
}, 1000);

Well, it’s the same in my trimCache function. Instead of this:

    trimCache(cacheName, maxItems)

I need to do this:

.then( function() {
    trimCache(cacheName, maxItems)

Or, if you prefer the more modern arrow function syntax:

.then( () => {
    trimCache(cacheName, maxItems)

Either way, I have to wrap the recursive function call in an anonymous function.

Here’s a gist with the updated trimCache function.

What’s annoying is that this mistake wasn’t throwing an error. Instead, it was causing a performance problem. I’m using this pattern right here on my own site, and whenever my cache of pages or images gets too big, the trimCaches function would get called …and then wouldn’t stop running.

I’m very glad that—witht the help of Trys at last week’s Homebrew Website Club Brighton—I was finally able to get to the bottom of this. If you’re using the trimCache function in your service worker, please update the code accordingly.

Management regrets the error.

Monday, January 14th, 2019

djinn and juice : The Best Debugging Story I’ve Ever Heard

Cassie and I were swapping debugging stories. I shared the case of the 500 mile email with her. She shared this with me.

Sunday, October 28th, 2018

Phil Nash and Jeremy Keith Save the Safari Video Playback Day

I love this example of paying it forward:

Friday, October 26th, 2018

Service workers and videos in Safari

Alright, so I’ve already talked about some gotchas when debugging service worker issues. But what if you don’t even realise the problem has anything to do with your service worker?

This is not a hypothetical situation. I encountered this very thing myself. Gather ‘round the campfire, children…

One of the latest case studies on the Clearleft site is a nice write-up by Luke of designing a mobile app for Virgin Holidays. The case study includes a lovely video that demonstrates the log-in flow. I implemented that using a video element (with a poster image). Nice and straightforward. Super easy. All good.

But I hadn’t done my due diligence in browser testing (I guess I didn’t even think of it in this case). Hana informed me that the video wasn’t working at all in Safari. The poster image appeared just fine, but when you clicked on it, the video didn’t load.

I ducked, ducked, and went, uncovering what appeared to be the root of the problem. It seems that Safari is fussy about having servers support something called “byte-range requests”.

I had put the video in question on an Amazon S3 server. I came to the conclusion that S3 mustn’t support these kinds of headers correctly, or something.

Now I had a diagnosis. The next step was figuring out a solution. I thought I might have to move the video off of S3 and onto a server that I could configure a bit more.

Luckily, I never got ‘round to even starting that process. That’s good. Because it turns out that my diagnosis was completely wrong.

I came across a recent post by Phil Nash called Service workers: beware Safari’s range request. The title immediately grabbed my attention. Safari: yes! Video: yes! But service workers …wait a minute!

There’s a section in Phil’s post entitled “Diagnosing the problem”, in which he says:

I first thought it could have something to do with the CDN I’m using. There were some false positives regarding streaming video through a CDN that resulted in some extra research that was ultimately fruitless.

That described my situation exactly. Except Phil went further and nailed down the real cause of the problem:

Nginx was serving correct responses to Range requests. So was the CDN. The only other problem? The service worker. And this broke the video in Safari.

Doh! I hadn’t even thought about service workers!

Phil came up with a solution, and he has kindly shared his code.

I decided to go for a dumber solution:

if ( request.url.match(/\.(mp4)$/) ) {

That tells the service worker to just step out of the way when it comes to video requests. Now the video plays just fine in Safari. It’s a bit of a shame, because I’m kind of penalising all browsers for Safari’s bug, but the Clearleft site isn’t using much video at all, and in any case, it might be good not to fill up the cache with large video files.

But what’s more important than any particular solution is correctly identifying the problem. I’m quite sure I never would’ve been able to fix this issue if Phil hadn’t gone to the trouble of sharing his experience. I’m very, very grateful that he did.

That’s the bigger lesson here: if you solve a problem—even if you think it’s hardly worth mentioning—please, please share your solution. It could make all the difference for someone out there.

Service workers and browser extensions

I quite enjoy a good bug hunt. Just yesterday, myself and Cassie were doing some bugfixing together. As always, the first step was to try to reproduce the problem and then isolate it. Which reminds me…

There’ve been a few occasions when I’ve been trying to debug service worker issues. The problem is rarely in reproducing the issue—it’s isolating the cause that can be frustrating. I try changing a bit of code here, and a bit of code there, in an attempt to zero in on the problem, butwith no luck. Before long, I’m tearing my hair out staring at code that appears to have nothing wrong with it.

And that’s when I remember: browser extensions.

I’m currently using Firefox as my browser, and I have extensions installed to stop tracking and surveillance (these technologies are usually referred to as “ad blockers”, but that’s a bit of a misnomer—the issue isn’t with the ads; it’s with the invasive tracking).

If you think about how a service worker does its magic, it’s as if it’s sitting in the browser, waiting to intercept any requests to a particular domain. It’s like the service worker is the first port of call for any requests the browser makes. But then you add a browser extension. The browser extension is also waiting to intercept certain network requests. Now the extension is the first port of call, and the service worker is relegated to be next in line.

This, apparently, can cause issues (presumably depending on how the browser extension has been coded). In some situations, network requests that should work just fine start to fail, executing the catch clauses of fetch statements in your service worker.

So if you’ve been trying to debug a service worker issue, and you can’t seem to figure out what the problem might be, it’s not necessarily an issue with your code, or even an issue with the browser.

From now on when I’m troubleshooting service worker quirks, I’m going to introduce a step zero, before I even start reproducing or isolating the bug. I’m going to ask myself, “Are there any browser extensions installed?”

I realise that sounds as basic as asking “Are you sure the computer is switched on?” but there’s nothing wrong with having a checklist of basic questions to ask before moving on to the more complicated task of debugging.

I’m going to make a checklist. Then I’m going to use it …every time.

Friday, September 7th, 2018

881410 - Incorrect transforms when stripping subdomains

The latest version of Chrome is removing seams by messing with the display of the URL.

This is a bug.

Wednesday, August 15th, 2018

Google AMP - A 70% drop in our conversion rate. - Rockstar Coders

Google hijacking and hosting your AMP pages (in order to pre-render them) is pretty terrible for user experience and security:

I’m trying to establish my company as a legitimate business that can be trusted by a stranger to build software for them. Having google.com reeks of a phishing scam or fly by night operation that couldn’t afford their own domain.

Tuesday, August 7th, 2018

Console methods

Whenever I create a fetch event inside a service worker, my code roughly follows the same pattern. There’s a then clause which gets executed if the fetch is successful, and a catch clause in case anything goes wrong:

fetch( request)
.then( fetchResponse => {
    // Yay! It worked.
.catch( fetchError => {
    // Boo! It failed.

In my book—Going Offline—I’m at pains to point out that those arguments being passed into each clause are yours to name. In this example I’ve called them fetchResponse and fetchError but you can call them anything you want.

I always do something with the fetchResponse inside the then clause—either I want to return the response or put it in a cache.

But I rarely do anything with fetchError. Because of that, I’ve sometimes made the mistake of leaving it out completely:

fetch( request)
.then( fetchResponse => {
    // Yay! It worked.
.catch( () => {
    // Boo! It failed.

Don’t do that. I think there’s some talk of making the error argument optional, but for now, some browsers will get upset if it’s not there.

So always include that argument, whether you call it fetchError or anything else. And seeing as it’s an error, this might be a legitimate case for outputing it to the browser’s console, even in production code.

And yes, you can output to the console from a service worker. Even though a service worker can’t access anything relating to the document object, you can still make use of window.console, known to its friends as console for short.

My muscle memory when it comes to sending something to the console is to use console.log:

fetch( request)
.then( fetchResponse => {
    return fetchResponse;
.catch( fetchError => {

But in this case, the console.error method is more appropriate:

fetch( request)
.then( fetchResponse => {
    return fetchResponse;
.catch( fetchError => {

Now when there’s a connectivity problem, anyone with a console window open will see the error displayed bold and red.

If that seems a bit strident to you, there’s always console.warn which will still make the output stand out, but without being quite so alarmist:

fetch( request)
.then( fetchResponse => {
    return fetchResponse;
.catch( fetchError => {

That said, in this case, console.error feels like the right choice. After all, it is technically an error.

Coming to a browser near you - faster than ever before!

A great long-term perspective from Rachel on the pace of change in standards getting shipped in browsers:

The pace that things are shipping, and at which bugs are fixed is like nothing we have seen before. I know from sitting around a table with representatives from each browser vendor at the CSS Working Group how important interop is. No-one wants features to be implemented differently in browsers. This is what we were asking for with WaSP, and despite the new complexity of the platform, browsers rendering standard features in different ways is becoming increasingly rare. Bugs happen, sometimes in the browser and sometimes in the spec, but there is a commitment to avoid these and to create a stable platform we can all rely on. It is exciting to be part of it.

Thursday, July 5th, 2018

The trimCache function in Going Offline

Paul Yabsley wrote to let me know about an error in Going Offline. It’s rather embarrassing because it’s code that I’m using in the service worker for adactio.com but for some reason I messed it up in the book.

It’s the trimCache function in Chapter 7: Tidying Up. That’s the reusable piece of code that recursively reduces the number of items in a specified cache (cacheName) to a specified amount (maxItems). On page 95 and 96 I describe the process of creating the function which, in the book, ends up like this:

 function trimCache(cacheName, maxItems) {
   cacheName.open( cache => {
     .then( items => {
       if (items.length > maxItems) {
           trimCache(cacheName, maxItems)
         ); // end delete then
       } // end if
     }); // end keys then
   }); // end open
 } // end function

See the problem? It’s right there at the start when I try to open the cache like this:

cacheName.open( cache => {

That won’t work. The open method only works on the caches object—I should be passing the name of the cache into the caches.open method. So the code should look like this:

caches.open( cacheName )
.then( cache => {

Everything else remains the same. The corrected trimCache function is here:

function trimCache(cacheName, maxItems) {
  .then( cache => {
    .then(items => {
      if (items.length > maxItems) {
          trimCache(cacheName, maxItems)
        ); // end delete then
      } // end if
    }); // end keys then
  }); // end open then
} // end function

Sorry about that! I must’ve had some kind of brainfart when I was writing (and describing) that one line of code.

You may want to deface your copy of Going Offline by taking a pen to that code example. Normally I consider the practice of writing in books to be barbarism, but in this case …go for it.

Update: There was another error in the code for trimCache! Here’s the fix.

Saturday, June 23rd, 2018

I discovered a browser bug - JakeArchibald.com

Jake’s blow-by-blow account of uncovering a serious browser vulnerability is fascinating. But if you don’t care for the technical details, skip ahead to to how different browser makers handled the issue—it’s very enlightening. (And if you do care for the technical details, make sure you click on the link to the PDF version of this post.)