Tags: performance

415

sparkline

Wednesday, July 24th, 2019

Fast Software, the Best Software — by Craig Mod

Fast software is not always good software, but slow software is rarely able to rise to greatness. Fast software gives the user a chance to “meld” with its toolset. That is, not break flow.

Sunday, July 21st, 2019

The Simplest Way to Load CSS Asynchronously | Filament Group, Inc.

Scott re-examines the browser support for loading everything-but-the-critical-CSS asynchronously and finds that it might now be as straightforward as this one declaration:

<link rel="stylesheet" href="/path/to/my.css" media="print" onload="this.media='all'">

I love the fact the Filament Group are actively looking at how deprecate their loadCSS polyfill—exactly the right attitude for polyfills in general.

Wednesday, July 3rd, 2019

How Google Pagespeed works: Improve Your Score and Search Engine Ranking

Ben shares the secret of SEO. Spoiler: the villain turns out to be Too Much JavaScript. Again.

Time to Interactive (TTI) is the most impactful metric to your performance score.

Therefore, to receive a high PageSpeed score, you will need a speedy TTI measurement.

At a high level, there are two significant factors that hugely influence TTI:

  • The amount of JavaScript delivered to the page
  • The run time of JavaScript tasks on the main thread

Sunday, June 16th, 2019

The Crushing Weight of the Facepile—zachleat.com

Using IntersectionObserver to lazy load images—very handy for webmention avatars.

When should you be using Web Workers? — DasSur.ma

Although this piece is ostensibly about why we should be using web workers more, there’s a much, much bigger point about the growing power gap between the devices we developers use and the typical device used by the rest of the planet.

While we are getting faster flagship phones every cycle, the vast majority of people can’t afford these. The more affordable phones are stuck in the past and have highly fluctuating performance metrics. These low-end phones will mostly likely be used by the massive number of people coming online in the next couple of years. The gap between the fastest and the slowest phone is getting wider, and the median is going down.

Thursday, June 6th, 2019

Designing for actual performance by Adam Silver

This is something I’ve been thinking about a lot lately. The justification for single page apps feels like circular thinking to me. A JavaScript framework is needed to avoid full page refreshes because full page refreshes are expensive because that means assets will be reloaded …assets like the JavaScript framework that only exists to avoid the full page refresh.

This is how it goes. We put a load of shit into a single web page. This makes the page slow. Slow to load, slow to render. Slow.

Instead of getting rid of the shit, we blame the page refresh.

Monday, June 3rd, 2019

Self-Host Your Static Assets – CSS Wizardry

Trust no one! Harry enumerates the reason why you should be self-hosting your assets (and busts some myths along the way).

There really is very little reason to leave your static assets on anyone else’s infrastructure. The perceived benefits are often a myth, and even if they weren’t, the trade-offs simply aren’t worth it. Loading assets from multiple origins is demonstrably slower.

Thursday, May 30th, 2019

Characteristics of a Strong Performance Culture | TimKadlec.com

Tim looks at the common traits of companies that have built a good culture of web performance:

  1. Top-down support
  2. Data-driven
  3. Clear targets
  4. Automation
  5. Knowledge sharing
  6. Culture of experimentation
  7. User focused, not tool focused

Few companies carry all of these characteristics, so it’s important not to get discouraged if you feel you’re missing a few of them. It’s a process and not a quick one. When I’ve asked folks at companies with all or most of these characteristics how long it took them to get to that point, the answer is typically in years, rarely months. Making meaningful changes to culture is much slower and far more difficult than making technical changes, but absolutely critical if you want those technical changes to have the impact you’re hoping for.

Monday, May 20th, 2019

Web Bloat Score Calculator

Page web bloat score (WebBS for short) is calculated as follows:

WebBS = TotalPageSize / PageImageSize

Yes, this is a tongue-in-cheek somewhat arbitrary measurement, but it’s well worth reading through the rationale for it.

How can the image of a page be smaller than the page itself?

Wednesday, May 8th, 2019

Timing out

Service workers are great for creating a good user experience when someone is offline. Heck, the book I wrote about service workers is literally called Going Offline.

But in some ways, the offline experience is relatively easy to handle. It’s a binary situation; either you’re online or you’re offline. What’s more challenging—and probably more common—is the situation that Jake calls Lie-Fi. That’s when technically you’ve got a network connection …but it’s a shitty connection, like one bar of mobile signal. In that situation, because there’s technically a connection, the user gets a slow frustrating experience. Whatever code you’ve got in your service worker for handling offline situations will never get triggered. When you’re handling fetch events inside a service worker, there’s no automatic time-out.

But you can make one.

That’s what I’ve done recently here on adactio.com. Before showing you what I added to my service worker script to make that happen, let me walk you through my existing strategy for handling offline situations.

Service worker strategies

Alright, so in my service worker script, I’ve got a block of code for handling requests from fetch events:

addEventListener('fetch', fetchEvent => {
        const request = fetchEvent.request;
    // Do something with this request.
});

I’ve got two strategies in my code. One is for dealing with requests for pages:

if (request.headers.get('Accept').includes('text/html')) {
    // Code for handling page requests.
}

By adding an else clause I can have a different strategy for dealing with requests for anything else—images, style sheets, scripts, and so on:

if (request.headers.get('Accept').includes('text/html')) {
    // Code for handling page requests.
} else {
    // Code for handling everthing else.
}

For page requests, I’m going to try to go the network first:

fetchEvent.respondWith(
    fetch(request)
    .then( responseFromFetch => {
        return responseFromFetch;
    })

My logic is:

When someone requests a page, try to fetch it from the network.

If that doesn’t work, we’re in an offline situation. That triggers the catch clause. That’s where I have my offline strategy: show a custom offline page that I’ve previously cached (during the install event):

.catch( fetchError => {
    return caches.match('/offline');
})

Now my logic has been expanded to this:

When someone requests a page, try to fetch it from the network, but if that doesn’t work, show a custom offline page instead.

So my overall code for dealing with requests for pages looks like this:

if (request.headers.get('Accept').includes('text/html')) {
    fetchEvent.respondWith(
        fetch(request)
        .then( responseFromFetch => {
            return responseFromFetch;
        })
        .catch( fetchError => {
            return caches.match('/offline');
        })
    );
}

Now I can fill in the else statement that handles everything else—images, style sheets, scripts, and so on. Here my strategy is different. I’m looking in my caches first, and I only fetch the file from network if the file can’t be found in any cache:

caches.match(request)
.then( responseFromCache => {
    return responseFromCache || fetch(request);
})

Here’s all that fetch-handling code put together:

addEventListener('fetch', fetchEvent => {
    const request = fetchEvent.request;
    if (request.headers.get('Accept').includes('text/html')) {
        fetchEvent.respondWith(
            fetch(request)
            .then( responseFromFetch => {
                return responseFromFetch;
            })
            .catch( fetchError => {
                return caches.match('/offline');
            })
        );
    } else {
        caches.match(request)
        .then( responseFromCache => {
            return responseFromCache || fetch(request);
        })
    }
});

Good.

Cache as you go

Now I want to introduce an extra step in the part of the code where I deal with requests for pages. Whenever I fetch a page from the network, I’m going to take the opportunity to squirrel it away in a cache. I’m calling that cache “pages”. I’m imaginative like that.

fetchEvent.respondWith(
    fetch(request)
    .then( responseFromFetch => {
        const copy = responseFromFetch.clone();
        try {
            fetchEvent.waitUntil(
                caches.open('pages')
                .then( pagesCache => {
                    return pagesCache.put(request, copy);
                })
            )
        } catch(error) {
            console.error(error);
        }
        return responseFromFetch;
    })

You’ll notice that I can’t put the response itself (responseFromCache) into the cache. That’s a stream that I only get to use once. Instead I need to make a copy:

const copy = responseFromFetch.clone();

That’s what gets put in the pages cache:

fetchEvent.waitUntil(
    caches.open('pages')
    .then( pagesCache => {
        return pagesCache.put(request, copy);
    })
)

Now my logic for page requests has an extra piece to it:

When someone requests a page, try to fetch it from the network and store a copy in a cache, but if that doesn’t work, show a custom offline page instead.

Here’s my updated fetch-handling code:

addEventListener('fetch', fetchEvent => {
    const request = fetchEvent.request;
    if (request.headers.get('Accept').includes('text/html')) {
        fetchEvent.respondWith(
            fetch(request)
            .then( responseFromFetch => {
                const copy = responseFromFetch.clone();
                try {
                    fetchEvent.waitUntil(
                        caches.open('pages')
                        .then( pagesCache => {
                            return pagesCache.put(request, copy);
                        })
                    )
                } catch(error) {
                    console.error(error);
                }
                return responseFromFetch;
            })
            .catch( fetchError => {
                return caches.match('/offline');
            })
        );
    } else {
        caches.match(request)
        .then( responseFromCache => {
            return responseFromCache || fetch(request);
        })
    }
});

I call this the cache-as-you-go pattern. The more pages someone views on my site, the more pages they’ll have cached.

Now that there’s an ever-growing cache of previously visited pages, I can update my offline fallback. Currently, I reach straight for the custom offline page:

.catch( fetchError => {
    return caches.match('/offline');
})

But now I can try looking for a cached copy of the requested page first:

.catch( fetchError => {
    caches.match(request)
    .then( responseFromCache => {
        return responseFromCache || caches.match('/offline');
    })
});

Now my offline logic is expanded:

When someone requests a page, try to fetch it from the network and store a copy in a cache, but if that doesn’t work, first look for an existing copy in a cache, and otherwise show a custom offline page instead.

I can also access this ever-growing cache of pages from my custom offline page to show people which pages they can revisit, even if there’s no internet connection.

So far, so good. Everything I’ve outlined so far is a good robust strategy for handling offline situations. Now I’m going to deal with the lie-fi situation, and it’s that cache-as-you-go strategy that sets me up nicely.

Timing out

I want to throw this addition into my logic:

When someone requests a page, try to fetch it from the network and store a copy in a cache, but if that doesn’t work, first look for an existing copy in a cache, and otherwise show a custom offline page instead (but if the request is taking too long, try to show a cached version of the page).

The first thing I’m going to do is rewrite my code a bit. If the fetch event is for a page, I’m going to respond with a promise:

if (request.headers.get('Accept').includes('text/html')) {
    fetchEvent.respondWith(
        new Promise( resolveWithResponse => {
            // Code for handling page requests.
        })
    );
}

Promises are kind of weird things to get your head around. They’re tailor-made for doing things asynchronously. You can set up two parameters; a success condition and a failure condition. If the success condition is executed, then we say the promise has resolved. If the failure condition is executed, then the promise rejects.

In my re-written code, I’m calling the success condition resolveWithResponse (and I haven’t bothered with a failure condition, tsk, tsk). I’m going to use resolveWithResponse in my promise everywhere that I used to have a return statement:

addEventListener('fetch', fetchEvent => {
    const request = fetchEvent.request;
    if (request.headers.get('Accept').includes('text/html')) {
        fetchEvent.respondWith(
            new Promise( resolveWithResponse => {
                fetch(request)
                .then( responseFromFetch => {
                    const copy = responseFromFetch.clone();
                    try {
                        fetchEvent.waitUntil(
                            caches.open('pages')
                            then( pagesCache => {
                                return pagesCache.put(request, copy);
                            })
                        )
                    } catch(error) {
                        console.error(error);
                    }
                    resolveWithResponse(responseFromFetch);
                })
                .catch( fetchError => {
                    caches.match(request)
                    .then( responseFromCache => {
                        resolveWithResponse(
                            responseFromCache || caches.match('/offline')
                        );
                    })
                })
            })
        );
    } else {
        caches.match(request)
        .then( responseFromCache => {
            return responseFromCache || fetch(request);
        })
    }
});

By itself, rewriting my code as a promise doesn’t change anything. Everything’s working the same as it did before. But now I can introduce the time-out logic. I’m going to put this inside my promise:

const timer = setTimeout( () => {
    caches.match(request)
    .then( responseFromCache => {
        if (responseFromCache) {
            resolveWithResponse(responseFromCache);
        }
    })
}, 3000);

If a request takes three seconds (3000 milliseconds), then that code will execute. At that point, the promise attempts to resolve with a response from the cache instead of waiting for the network. If there is a cached response, that’s what the user now gets. If there isn’t, then the wait continues for the network.

The last thing left for me to do is cancel the countdown to timing out if a network response does return within three seconds. So I put this in the then clause that’s triggered by a successful network response:

clearTimeout(timer);

I also add the clearTimeout statement to the catch clause that handles offline situations. Here’s the final code:

addEventListener('fetch', fetchEvent => {
    const request = fetchEvent.request;
    if (request.headers.get('Accept').includes('text/html')) {
        fetchEvent.respondWith(
            new Promise( resolveWithResponse => {
                const timer = setTimeout( () => {
                    caches.match(request)
                    .then( responseFromCache => {
                        if (responseFromCache) {
                            resolveWithResponse(responseFromCache);
                        }
                    })
                }, 3000);
                fetch(request)
                .then( responseFromFetch => {
                    clearTimeout(timer);
                    const copy = responseFromFetch.clone();
                    try {
                        fetchEvent.waitUntil(
                            caches.open('pages')
                            then( pagesCache => {
                                return pagesCache.put(request, copy);
                            })
                        )
                    } catch(error) {
                        console.error(error);
                    }
                    resolveWithResponse(responseFromFetch);
                })
                .catch( fetchError => {
                    clearTimeout(timer);
                    caches.match(request)
                    .then( responseFromCache => {
                        resolveWithResponse(
                            responseFromCache || caches.match('/offline')
                        );
                    })
                })
            })
        );
    } else {
        caches.match(request)
        .then( responseFromCache => {
            return responseFromCache || fetch(request)
        })
    }
});

That’s the JavaScript translation of this logic:

When someone requests a page, try to fetch it from the network and store a copy in a cache, but if that doesn’t work, first look for an existing copy in a cache, and otherwise show a custom offline page instead (but if the request is taking too long, try to show a cached version of the page).

For everything else, try finding a cached version first, otherwise fetch it from the network.

Pros and cons

As with all service worker enhancements to a website, this strategy will do absolutely nothing for first-time visitors. If you’ve never visited my site before, you’ve got nothing cached. But the more you return to the site, the more your cache is primed for speedy retrieval.

I think that serving up a cached copy of a page when the network connection is flaky is a pretty good strategy …most of the time. If we’re talking about a blog post on this site, then sure, there won’t be much that the reader is missing out on—a fixed typo or ten; maybe some additional webmentions at the end of a post. But if we’re talking about the home page, then a reader with a flaky network connection might think there’s nothing new to read when they’re served up a stale version.

What I’d really like is some way to know—on the client side—whether or not the currently-loaded page came from a cache or from a network. Then I could add some kind of interface element that says, “Hey, this page might be stale—click here if you want to check for a fresher version.” I’d also need some way in the service worker to identify any requests originating from that interface element and make sure they always go out to the network.

I think that should be doable somehow. If you can think of a way to do it, please share it. Write a blog post and send me the link.

But even without the option to over-ride the time-out, I’m glad that I’m at least doing something to handle the lie-fi situation. Perhaps I should write a sequel to Going Offline called Still Online But Only In Theory Because The Connection Sucks.

Tuesday, May 7th, 2019

Test the impact of ads and third party scripts

This is a very useful new feature in Calibre, the performance monitoring tool. Now you can get data about just how much third-party scripts are affecting your site’s performance:

The best way of circumventing fear and anxiety around third party script performance is to capture metrics that clearly articulate their performance impact.

Tuesday, April 30th, 2019

Progressive Font Enrichment: reinventing web font performance | Responsive Web Typography

Jason describes the next big thing in web typography: streaming fonts!

…to enable the ability for only the required part of the font be downloaded on any given page, and for subsequent requests for that font to dynamically ‘patch’ the original download with additional sets of glyphs as required on successive page views—even if they occur on separate sites.

Friday, April 26th, 2019

How I failed the <a>

I think the situation that Remy outlines here is quite common (in client-rehydrated server-rendered pages), but what’s less common is Remy’s questioning and iteration.

So I now have a simple rule of thumb: if there’s an onClick, there’s got to be an anchor around the component.

Wednesday, April 24th, 2019

Preload, prefetch and other link tags: what they do and when to use them · PerfPerfPerf

Following on from Harry’s slides, here’s another round-up of thoserel attribute values that begin with pre.

More Than You Ever Wanted to Know About Resource Hints - Speaker Deck

Slides from Harry’s deep dive into rel values: preconnect, prefetch, and preload.

Friday, April 12th, 2019

Google AMP lowered our page speed, and there’s no choice but to use it - unlike kinds

What happens when you’re AMP pages are slower than your regular pages …but you’re forced to use AMP anyway if you want to appear in the top stories carousel.

AMP isn’t about speed. It’s about control.

The elephant in the room here is pre-rendering: that’s why Google aren’t using page speed alone as a determining factor for what goes in the carousel.

Monday, April 8th, 2019

AddyOsmani.com - Native image lazy-loading for the web!

The loading attribute for images and iframes is coming to Chrome. The best part:

You can also use loading as a progressive enhancement. Browsers that support the attribute can get the new lazy-loading behavior with loading=lazy and those that don’t will still have images load.

Thursday, March 28th, 2019

Responsible JavaScript: Part I · An A List Apart Article

As I pick apart yet another bundle not unlike a tangled ball of Christmas tree lights, it’s become clear that the web is drunk on JavaScript. We reach for it for almost everything, even when the occasion doesn’t call for it. Sometimes I wonder how vicious the hangover will be.

I love everything about this article and I can’t wait for part two.

What we tend to forget is that the environment websites and web apps occupy is one and the same. Both are subject to the same environmental pressures that the large gradient of networks and devices impose. Those constraints don’t suddenly vanish when we decide to call what we build “apps”, nor do our users’ phones gain magical new powers when we do so.

Needless to say, I endorse this message:

Whether you think of your site as an “app” or not, adding a service worker to it is perhaps one of the most responsible uses of JavaScript that exists today.

Monday, March 25th, 2019

Stuffing the Front End

53% of mobile visits leave a page that takes longer than 3 seconds to load. That means that a large number of visitors probably abandoned these sites because they were staring at a blank screen for 3 seconds, said “fuck it,” and left approximately half way before the page showed up. The fact that the next page interaction would have been quicker—assuming all the JS files even downloaded correctly in the first attempt—doesn’t amount to much if they didn’t stick around for the first page to load. What was gained by putting the business logic in the front end in this scenario?

Friday, March 22nd, 2019

Who has the fastest website in F1? - JakeArchibald.com

I think I physically winced on more than one occassion as I read through Jake’s report here.

He makes an interesting observation at the end:

However, none of the teams used any of the big modern frameworks. They’re mostly Wordpress & Drupal, with a lot of jQuery. It makes me feel like I’ve been in a bubble in terms of the technologies that make up the bulk of the web.

Yes! This! Contrary to what you might think reading through the latest and greatest tips and tricks from the front-end community, the vast majority of sites out there on the web are not being built with React, Vue, webpack or any other “modern” tools.