Tags: rem

84

sparkline

Friday, October 18th, 2019

Quitting Analytics

What over a decade of number-crunching analytics has taught me is that spending an hour writing, sharing, or helping someone is infinitely more valuable than spending that hour swimming through numbers. Moreover, trying to juice the numbers almost invariably divorces you from thinking about customers and understanding people. On the surface, it seems like a convenient proxy, but it’s not. They’re just numbers. If you’re searching for business insights, talking to real people beats raw data any day. It’s not as convenient, but when is anything worth doing convenient?

Web talk

At the start of this month I was in Amsterdam for a series of back-to-back events: Indie Web Camp Amsterdam, View Source, and Fronteers. That last one was where Remy and I debuted talk we’d been working on.

The Fronteers folk have been quick off the mark so the video is already available. I’ve also published the text of the talk here:

How We Built The World Wide Web In Five Days

This was a fun talk to put together. The first challenge was figuring out the right format for a two-person talk. It quickly became clear that Remy’s focus would be on the events of the five days we spent at CERN, whereas my focus would be on the history of computing, hypertext, and networks leading up to the creation of the web.

Now, we could’ve just done everything chronologically, but that would mean I’d do the first half of the talk and Remy would do the second half. That didn’t appeal. And it sounded kind of boring. So then we come up with the idea of interweaving the two timelines.

That worked remarkably well. The talk starts with me describing the creation of CERN in the 1950s. Then Remy talks about the first day of the hack week. I then talk about events in the 1960s. Remy talks about the second day at CERN. This continues until we join up about half way through the talk: I’ve arrived at the moment that Tim Berners-Lee first published the proposal for the World Wide Web, and Remy has arrived at the point of having running code.

At this point, the presentation switches gears and turns into a demo. I do not have the fortitude to do a live demo, so this was all down to Remy. He did it flawlessly. I have so much respect for people brave enough to do live demos, and do them well.

But the talk doesn’t finish there. There’s a coda about our return to CERN a month after the initial hack week. This was an opportunity for both of us to close out the talk with our hopes and dreams for the World Wide Web.

I know I’m biased, but I thought the structure of the presentation worked really well: two interweaving timelines culminating in a demo and finishing with the big picture.

There was a forcing function on preparing this presentation: Remy was moving house, and I was already going to be away speaking at some other events. That limited the amount of time we could be in the same place to practice the talk. In the end, I think that might have helped us make the most of that time.

We were both feeling the pressure to tell this story well—it means so much to us. Personally, I found that presenting with Remy made me up my game. Like I said:

It’s been a real treat working with Remy on this. Don’t tell him I said this, but he’s kind of a web hero of mine, so this was a real honour and a privilege for me.

This talk could have easily turned into a boring slideshow of “what we did on our holidays”, but I think we managed to successfully avoid that trap. We’re both proud of this talk and we’d love to give it again some time. If you’d like it at your event, get in touch.

In the meantime, you can read the text, watch the video, or look at the slides (but the slides really don’t make much sense in isolation).

Wednesday, October 16th, 2019

How We Built The World Wide Web In Five Days

This talk about recreating the first ever web browser was a joint presentation with Remy Sharp, delivered at the Fronteers conference in Amsterdam in October 2019.

Jeremy

Our story begins with the Big Bang.

13.8 billion years ago

This sets a chain of events in motion that gives us elementary particles, then more complex particles like atoms, which form stars and planets, including our own, on which life evolves, which brings us to the recent past when this whole process results in the universe generating a way of looking at itself: physicists.

A physicist is the atom’s way of knowing about atoms.

—George Wald

By the end of World War Two, physicists in Europe were in short supply. If they hadn’t already fled during Hitler’s rise to power, they were now being actively wooed away to the United States.

64 years ago

To counteract this brain drain, a coalition of countries forms the European Organization for Nuclear Research, or to use its French acronym, CERN.

They get some land in a suburb of Geneva on the border between Switzerland and France, where they set about smashing particles together and recreating the conditions that existed at the birth of the universe.

The Syncrocyclotron.

Every year, CERN is host to thousands of scientists who come to run their experiments.

Remy

Fast forward to February 2019, a group of 9 of us were invited to CERN as an elite group of hackers to recreate a different experiment.

The group.

We are there to recreate a piece of software first published 30 years ago. Given this goal, we need to answer some important questions first:

  • How does this software look and feel?
  • How does it work?
  • How you interact with it?
  • How does it behave?

The software is so old that it doesn’t run on any modern machines, so we have a NeXT machine specially shipped from the nearby museum. This is no ordinary machine. It was one of the only two NeXT machines that existed at CERN in the late 80s.

Now we have the machine to run this special software.

By some fluke the good people of the web have captured several different versions of this software and published them on Github.

So we selected the oldest version we could find. We download it from Github to our computers. Now we have to transfer it to the NeXT machine.

Except there’s no USB drive. It didn’t exist. CD ROM? Floppy drive? The NeXT computer had a “floptical drive”—bespoke to NeXT computers—all very well, but in 2019 we don’t have those drives.

To transfer the software from our machine, to the NEXT machine, we needed to use the network.

Jeremy

62 years ago

In 1957, J.C.R. Licklider was the first person to publicly demonstrate the idea of time sharing: linking one computer to another.

56 years ago

Six years later, he expanded on the idea in a memo that described an Intergalactic Computer Network.

By this time, he was working at ARPA: the department of Defense’s Advanced Research Projects Agency. They were very interested in the idea of linking computers together, for very practical reasons.

America’s military communications had a top-down command-and-control structure. That was a single point of failure. One pre-emptive strike and it’s game over.

The solution was to create a decentralised network of computers that used Paul Baran’s brilliant idea of packet switching to move information around the network without any central authority.

This idea led to the creation of the ARPANET. Initially it connected a few universities. The ARPANET grew until it wasn’t just computers at each endpoint; it was entire networks. It was turning into a network of networks …an internetwork, or internet, for short. In order for these networks to play nicely with one another, they needed to agree on using the same set of protocols for packet switching.

Bob Kahn and Vint Cerf crafted the simplest possible set of low-level protocols: the Transmission Control Protocol and the Internet Protocol. TCP/IP.

TCP/IP is deliberately dumb. It doesn’t care about the contents of the packets of data being passed around the internet. People were then free to create more task-specific protocols to sit on top of TCP/IP.

There are protocols specifically for email, for example. Gopher is another example of a bespoke protocol. And there’s the File Transfer Protocol, or FTP.

Remy

Back in our war room in 2019, we finally work out that can use FTP to get the software across. FTP is an arcane protocol, but we can agree that it will work across the two eras.

Although we have to manually install FTP servers onto our machines. FTP doesn’t ship with new machines because it’s generally considered insecure.

Now we finally have the software installed on the NeXT computer and we’re able to run the application.

We double click the shading looking, partly hand drawn icon with a lightning bolt on it, and we wait…

Once the software’s finally running, we’re able to see that it looks a bit like an ancient word processor. We can read, edit and open documents. There’s some basic styles lots of heavy margins. There’s a super weird menu navigation in place.

But there’s something different about this software. Something that makes this more than just a word processor.

These documents, they have links…

Jeremy

Ted Nelson is fond of coining neologisms. You can thank him for words like “intertwingled” and “teledildonics”.

56 years ago

He also coined the word “hypertext” in 1963. It is defined by what it is not.

Hypertext is text which is not constrained to be linear.

Ever played a “choose your own adventure” book? That’s hypertext. You can jump from one point in the book to a different point that has its own unique identifier.

The idea of hypertext predates the word. In 1945, Vannevar Bush published a visionary article in The Atlantic Monthly called As We May Think.

He imagines a mechanical device built into a desk that can summon reams of information stored on microfilm, allowing the user to create “associative trails” as they make connections between different concepts. He calls it the Memex.

Memex

Also in 1945, a young American named Douglas Engelbart has been drafted into the navy and is shipping out to the Pacific to fight against Japan. Literally as the ship is leaving the harbour, word comes through that the war is over. He still gets shipped out to the Philippines, but now he’s spending his time lounging in a hut reading magazines. That’s how he comes to read Vannevar Bush’s Memex article, which lodges in his brain.

51 years ago

Douglas Engelbart decides to dedicate his life to building the computer equivalent of the Memex.

On December 9th, 1968, he unveils his oNLine System—NLS—in a public demonstration. Not only does he have a working implementation of hypertext, he also shows collaborative real-time editing, windows, graphics, and oh yeah—for this demo, he invents the mouse.

It truly is The Mother of All Demos.

Douglas Engelbart has a posse.

39 years ago

There were a number of other attempts at creating hypertext systems. In 1980, a young computer scientist named Tim Berners-Lee found himself working at CERN, where scientists were having a heck of time just keeping track of information.

He created a system somewhat like Apple’s Hypercard, but with clickable links. He named it ENQUIRE, after a Victorian book of manners called Enquire Within Upon Everything.

ENQUIRE didn’t work out, but Tim Berners-Lee didn’t give up on the problem of managing information at CERN. He thinks about all the work done before: Vannevar Bush’s Memex; Ted Nelson’s Xanadu project; Douglas Engelbart’s oNLine System.

A lot of hypertext ideas really are similar to a choose-your-own-adventure: jumping around from point to point within a book. But what if, instead of imagining a hypertext book, we could have a hypertext library? Then you could jump from one point in a book to a different point in a different book in a completely different part of the library.

The Library Of Babel

In other words, what if you took the world of hypertext and the world of networks, and you smashed them together?

30 years ago

On the 12th of March, 1989, Tim Berners-Lee circulates the first draft of a document titled Information Management: A Proposal.

The diagrams are incomprehensible. But his supervisor at CERN, Mike Sendall, sees the potential. He reads the proposal and scrawls these words across the top: “vague, but exciting.”

Tim Berners-Lee gets the go-ahead to spend some time on this project. And he gets the budget for a nice shiny NeXT machine. With the support of his colleague Robert Cailliau, Berners-Lee sets about making his theoretical project a reality. They kick around a few ideas for the name.

They thought of calling it The Mesh. They thought of calling it The Information Mine, but Tim rejected that, knowing that whatever they called it, the words would be abbreviated to letters, and The Information Mine would’ve seemed quite egotistical.

So, even though it’s only going to exist on one single computer to begin with, and even though the letters of the abbreviation take longer to say than the words being abbreviated, they call it …the World Wide Web.

As Robert Cailliau told us, they were thinking “Well, we can always change it later.”

Tim Berners-Lee brainstorms a new protocol for hypertext called the HyperText Transfer Protocol—HTTP.

He thinks about a format for hypertext called the Hypertext Markup Language—HTML.

He comes up with an addressing scheme that uses Unique Document Identifiers—UDIs, later renamed to URIs, and later renamed again to URLs.

But he needs to put it all together into running code. And so Tim Berners-Lee sets about writing a piece of software…

Remy

Tim Berners-Lee’s document is a proposal at that stage 30 years ago. It’s just theory. So he needs to build a prototype to actually demonstrate how the World Wide Web would work.

The NeXT computer is the perfect ground for rapid software development because the NeXT operating system ships with a program called NSBuilder.

NeXT

NSBuilder is software to build software. In fact, the “NS” (meaning NeXTSTEP) can be found in existing software today - you’ll find references to NSText in Safari and Mac developer documentation.

Tim Berners-Lee, using NSBuilder was able to create a working prototype of this software in just 6 weeks

He called it: WorldWideWeb.

We finally have the software working the way it ran 30 years ago.

But our project is to replicate this browser so that you can try it out, and see how web pages look through the lens of 1990.

So we enter some of our blog urls. https://remysharp.com, https://adactio.com

But HTTPS doesn’t work. There was no HTTPS. There’s no HTTP2. HTTP1.0 hadn’t even been invented.

So I make a proxy. Effectively a monster-in-the-middle attack on all web requests, stripping the SSL layer and then returning the HTML over the HTTP 0.9 protocol.

And finally, we see…

We see junk.

We can see the text content of the website, but there’s a lot of HTML junk tags being spat out onto the screen, particularly at the start of the document.

Jeremy

<h1> <h2> <h3> <h4> <h5> <h6> 
<ol> <ul> <li> <p>

These tags are probably very familiar to you. You recognise this language, right?

That’s right. It’s SGML.

SGML is the successor to GML, which supposedly stands for Generalised Markup Language. But that may well be a backronym. The format was created by Goldfarb, Mosher, and Lorie: G, M, L.

SGML is supposed to be short for Standard Generalised Markup Language.

A flavour of SGML was already being used at CERN when Tim Berners-Lee was working on his World Wide Web project. Rather than create a whole new format from scratch, he repurposed what people were already familiar with. This was his HyperText Markup Language, HTML.

One thing he did add was a tag called A for anchor.

Its href attribute is short for “hypertext reference”. Plop a URL in there and you’ve got a link.

The hypertext community thought this was a terrible way to make links.

They believed that two-way linking was vital. With two-way linking, the linked resource connects back to where the link originates. So if the linked resource moved, the link would stay intact.

That’s not the case with the World Wide Web. If the linked resource moves, the link is broken.

Perhaps you’ve experienced broken links?

When Tim Berners-Lee wrote the code for his WorldWideWeb browser, there was a grand total of 26 tags in HTML. I know that we’d refer to them as elements today, but that term wasn’t being used back then.

Now there are well over 100 elements in HTML. The reason why the language has been able to expand so much is down to the way web browsers today treat unknown elements: ignore any opening and closing tags you don’t recognise and only render the text in between them.

Remy

The parsing algorithm was brittle (when compared to modern parsers). There’s no DOM tree being built up. Indeed, the DOM didn’t exist.

Remember that the WorldWideWeb was a browser that effectively smooshed together a word processor and network requests, the styling method was based (mostly) around adding margins as the tags were parsed.

Kimberly Blessing was digging through the original 7344 lines of code for the WorldWideWeb source. She found the code that could explain why we were seeing junk.

<link rel="..."

In this case, when the parser encountered <link rel="…" it would see the <.

<

“Yes, a tag; let’s slurp it up”.

<li

Then it reads li and the parser is thinking, “This looks like a list item, good stuff.”

<lin

Then encounters the n (of link) and, excusing the paring algorithm because it was the first, would then abort the style it was about to apply and promptly spit out the rest of the content on screen, having already swallowed up the first four characters: <lin.

k rel="stylesheet" href="...">

With that, we decided to make the executive design decision that we would strip out any elements that were unknown to the original WorldWideWeb browser — link, script, video and img — which of course there was no image support in the world’s first browser.

This is the first little cheat we applied, so that the page would be more pleasing to you, the visitor of our emulator. Otherwise you’d be presented with a lot of scary looking junk.

So now we have all the reference we need to be able to replicate this browser:

  • The machine running the original operating system, which gives us colours, fonts, menus and so on.
  • The browser itself, how windows behave, what’s in the menus, what makes the experience unique to that period of time.
  • And finally how it looks when we visit URLs.

So off we go.

🤯

Jeremy

While Remy sets about recreating the functionality of the WorldWideWeb browser, Angela was recreating the user interface using CSS.

Inputs. Buttons. Icons. Menus. All with the exact borders, highlights and shadows used in the UI of the NeXT operating system, including having the scrollbar on the left side of windows.

Meanwhile the rest of us were putting together an explanatory website to give some backstory to what we were doing. I spent most of my time working on a timeline showing thirty years before and thirty years after the original proposal for the web.

Marking up (and styling) an interactive timeline that looks good in a modern browser and still works in the first ever web browser.

The WorldWideWeb browser inherited fonts from the NeXTSTEP operating system. It mostly used Helvetica and a font called Ohlfs (created by Keith Ohlfs). Helvetica is ubiquitous but Ohlfs was never seen outside of a NeXT machine.

Our teammates Mark and Brian were obsessed with accurately recreating the typography. We couldn’t use modern fonts which are vector based. We need pixeliness.

So Mark and Brian took a screenshot of the NeXT machine’s alphabet. With help from afar from font designer David Jonathan Ross, they traced each square pixel in a vector program and then exported that as a web font. Now we’ve got a web font that deliberately isn’t anti-aliased. It’s a vector format that recreates the look of a bitmap.

Put the pixelly font together with the CSS interface elements and you’ve got something that really looks like the old WorldWideWeb programme.

Remy

This is the final product of our work at CERN that week. A fully working WorldWideWeb emulator giving a reasonable close experience of what it was like to surf the web as if it were 30 years ago.

This is entirely in the browser and was written using:

  • React,
  • React Draggable for the windows and menus,
  • React Hotkeys for keyboard combo shortcuts (we replicated the original OS as much as we could),
  • idb-keyval for some local storage,
  • Parcel for bundling.

These tools weren’t chosen particular because they were the best tools for the job, but rather because they were the tools I knew that well enough that would help speed up my development process.

We worked hard to replicate the look and feel as much as we could. We even replicated typos found throughout the WorldWideWeb app:

An excercise in global information availability

Why don’t we see how it looks…

Jeremy

There’s kind of irony in this in that it relies heavily on JavaScript. In fact, there’s nothing there other than JavaScript. But of course the WorldWideWeb browser couldn’t deal with JavaScript—JavaScript hadn’t been invented yet. So the one URL that definitely wouldn’t work in this emulator is …the emulator itself.

Remy

(Which Jeremy was blaming me for.)

This is what you see when you visit the WorldWideWeb browser for the first time. We can see we are welcomed by the universe of hypertext. We’ve got these menus over here that you can drag off and open panels (I always thought this was an ordering bug but the operating system actually works like this).

We’ll go ahead and open the Fronteers website. I go to “Document” and then I go to “Open from full document reference” (because the word URL didn’t exist). I’m going to pop the Fronteers URL in here. And there it is. We’ve got the Fronteers website. Looks pretty good. (One of my favourite UI bits is this scrollbar on the left hand side instead of the right.)

We can follow the links. Actually one of my favourite features that was in this original browser that we replicated was this “Navigate” menu. I’ve just opened the first link in the document, but I can click on “Next”, and “Next” a bunch of times and it will cycle through each one of the links on the page that I launched from and let me read all the pages that the Fronteers site links to (which I really like). I can go backwards and forwards, and so on.

One thing you might have already noticed is that there are no URLs here. And in fact, to view source, it was considered a kind of diagnostic option and it was very very tucked away. The reason for this is that URLs—and the source HTML or SGML—was considered ugly and potentially a bad user experience.

But there’s one thing about navigating here that’s different. To open this link, I had to double-click.

Jeremy

The WorldWideBrowser was more of a prototype than anything else. It demonstrated the potential of the World Wide Web project, but it only worked on NeXT machines.

To show how the World Wide Web could work on any computer, the second ever web browser was the Line Mode Browser, coded by Nicola Pellow. It had a very basic text interface—no clicking on links—but it could be installed anywhere.

Lots of other geeks and nerds were working on their own web browsers, but it was Marc Andreesen’s Mosaic browser that really blew the doors open for the web. It had a nice usable interface, and it (unilaterrally) introduced the innovation of images on the web.

Andreesen went on to found Netscape. The World Wide Web took off at an unprecedented rate. Microsoft brought out their Internet Explorer browser and started trying to catch up with Netscape. We had the browser wars. Later we got even more browsers, like Safari and Chrome, while Netscape morphed into Firefox and Internet Explorer morphed into Edge. And the rest is history.

But all of these browsers were missing something that was in the original WorldWideWeb browser.

Remy

The reason I have to double-click on these links is that, when I do a single click, it actually places the cursor. The cursor is blinking there on “Fronteers.” And the reason I can place the cursor is because I can edit the document.

I see Fronteers here is missing a heading. We want to welcome you all:

Welkom

We want to make that a heading. Let’s style that. It’s a heading.

So the browser was meant to edit documents. Let’s put a bit of text here:

Great talks from Remy and Jeremy

(forget about everyone else). Now if I want to create a link, I’ll go ahead and navigate to Jeremy’s site, https://adactio.com. I’m going to do “Link”, then “Mark all”, which is a way of copying the URL to that window. Then I go back to the Fronteers website, select “Jeremy”, and then do “Link to marked.” I can double-click on Jeremy’s name it will open up his website.

I can save this document as well. I’m going to call it fronteers.html.

Let’s do a hard reboot—a browser refresh. I come back to my machine a couple of days later, “Ah, the Fronteers page!”. I’m going to open that again, and it linked to that really handsome guy in the sprite shirt. And yes, the links still work.

In fact, this documentation that you see when the WorldWideWeb browser launches was written, styled, and linked using the WorldWideWeb browser. The WorldWideWeb browser was for a web that you could read and write.

But this didn’t survive. It was a hurdle that was too tricky to propose or implement across the different types servers that existed and for the upcoming browsers that were on the horizon.

And so it wasn’t standardised and doesn’t exist today.

But this is an important lesson from the time: reducing complexity increases the chances of mass adoption.

In the end, simplicity wins.

Jeremy

I think that’s a pattern we see over and over again, not just in the history of the web, but before the web. Simplicity wins.

Ted Nelson famously to this day thinks that the World Wide Web is weak sauce. It didn’t try to solve complex right out of the gate, like handling micro-payments.

As we saw, the hypertext community that one-way linking was ridiculous. But simplicity does win out.

Unfortunately that’s why browsers ended up just being browsers. We got some of the functionality back with wikis, content management systems, and social media to a certain extent. But I think it’s still a bit of a shame that when I want to browse a web page, I’m using one piece of software—the browser—but when I want to make a web page, I’m using another piece of software (or multiple pieces of software) to get something on to the web.

I feel like we lost something.

Remy

We head home after a week of hacking.

We were all invited back in March earlier this year for the Web@30 event that was taking place to celebrate the web but also Sir Tim Berners-Lee.

A NeXT machine from 1989 running the WorldWideWeb browser and my laptop in 2019 running https://worldwideweb.cern.ch

A few of us, Jeremy, Martin, and myself, went back to CERN for the the first leg of the event. There was even a video showing off our work as part of the main conference. Jeremy and I even chased Tim Berners-Lee back to London at the science museum like obsessive web fanboys. It was a lot of fun!

The night before I got a message from Jean-François Groff, pictured here on the right. JF Groff joined Tim Berners-Lee 30 years ago and created libwww (a precursor to libcurl).

The message read:

Sitting with Tim right now. He loves your browser!

Crushed it.

It’s amazing that we were able to pull this off in a week just with text editors and information that’s freely available. It’s mind boggling how much we can do today and how far it can reach. And it all started on that NeXTSTEP machine 30 years ago.

What I really loved about this project was working with this brilliantly old technology, digging around at the birth of browsers and the web.

I wouldn’t be stood here today, if it weren’t for the web.

I wouldn’t even know Jeremy, if it weren’t for the web.

I wouldn’t have a career, if it weren’t for the web.

I loved seeing how such old technology, the original WorldWideWeb browser was still able to render my blog. Because I put content first, delivered markup from the server. The page rendered because HTML really is backward compatible.

HTML and HTTP are just text. Nothing terribly fancy. Dare I say, beautifully simple, and as we said before, simplicity wins the day.

This same simplicity is what allows us all to have the chance for an equal voice. The web allows us to freely publish our thoughts and experiences. We have to fight to protect that kind of web.

And we’ve got to work at keeping it simple.

Jeremy

When we returned to CERN for the 30th anniversary celebrations, one of the other people there was the journalist Zeynep Tefepkçi.

When @Zeynep met NeXT.

Lou, Zeynep, Tim, Robert, and Jean-François. #Web30

She was on a panel along with Tim Berners-Lee, Robert Caillau, Jean-François Groff, and Lou Montoulli. At the end of the panel discussion, she was asked:

What would you tell the next generation about how to use this wonderful tool?

She replied:

If you have something wonderful, if you do not defend it, you will lose it.

If you do not defend the magic and the things that make it wonderful, it’s just not going to stay magical by itself.

Defend the simplicity and resilience that’s so central to the web.

I don’t know about you, but I often feel that just trying to make a web page has become far too complicated. But this is complexity that we have chosen with our tools, processes, and assumptions. We’ve buried the magic. The magic of linking web pages together. The magic of a working global hypertext system, where nobody needs to ask for permission to publish.

Tim Berners-Lee prototyped the first web browser, but the subsequent world wide web wasn’t created by any one person. It was created by everyone. That. Is. Magical.

I don’t want the web to become a place where only an elite priesthood get to experience the magic of creation. I’m going to fight to defend the openness of the world wide web. This is for everyone. Not just for everyone to use; it’s for everyone to create.

Wednesday, July 3rd, 2019

How Google Pagespeed works: Improve Your Score and Search Engine Ranking

Ben shares the secret of SEO. Spoiler: the villain turns out to be Too Much JavaScript. Again.

Time to Interactive (TTI) is the most impactful metric to your performance score.

Therefore, to receive a high PageSpeed score, you will need a speedy TTI measurement.

At a high level, there are two significant factors that hugely influence TTI:

  • The amount of JavaScript delivered to the page
  • The run time of JavaScript tasks on the main thread

Thursday, June 6th, 2019

Have we reached Peak Data?

Matt’s publishing a newsletter on the past, present, and future of tracking:

The last 100 years have been a journey to see how to measure ghosts - how to measure the invisible audiences at the end of technological distribution networks. With every decade, these ghosts have come more and more into focus, ending with a the last ten years of social media and digital advertising that has created unimaginable amounts of data about everything we see, read, click and like.

He sees the pendulum swinging the other way now …for those who can afford it:

If there’s one constant in the economics of audience data over the last 100 years, is that we only get free services if we pay for them with our attention. This has been true for commercial radio and television, free newspapers, mobile games and digital content. If we want privacy, we have to pay for it, and not everyone can afford this. Will the right to become a ghost only be for the people with money to buy premium products?

Monday, May 20th, 2019

Web Bloat Score Calculator

Page web bloat score (WebBS for short) is calculated as follows:

WebBS = TotalPageSize / PageImageSize

Yes, this is a tongue-in-cheek somewhat arbitrary measurement, but it’s well worth reading through the rationale for it.

How can the image of a page be smaller than the page itself?

Tuesday, May 7th, 2019

Test the impact of ads and third party scripts

This is a very useful new feature in Calibre, the performance monitoring tool. Now you can get data about just how much third-party scripts are affecting your site’s performance:

The best way of circumventing fear and anxiety around third party script performance is to capture metrics that clearly articulate their performance impact.

Saturday, March 9th, 2019

Performance Budgets That Stick - TimKadlec.com

I like Tim’s definition here:

A performance budget is a clearly defined limit on one or more performance metrics that the team agrees not to exceed, and that is used to guide design and development.

And I agree about the four attributes required for a performance budget to succeed. It must be:

  1. Concrete
  2. Meaningful
  3. Integrated
  4. Enforceable

The point is not to let the performance budget try to stand on its own, somewhere hidden in company documentation collecting dust. You need to be proactive about making the budget become a part of your everyday work.

Saturday, February 9th, 2019

CSS Remedy

This is a really interesting approach that isn’t quite a CSS reset or a normalisation. Instead, it’s an experiment to reimagine what a default browser stylesheet would be like if it were created today, without concerns about backwards compatibility:

Applies basic styling to form elements and controls, getting you started with custom styling. We want to find the balance between providing a base for implementing a custom design, and allowing OS-level control over how form inputs work (like how a number pad works on iOS).

Provides a very lightweight starter file, with generic visual styling that you will want to replace. This isn’t as robust or opinionated as a starter-theme or framework. We’ve leaned toward specifying less, so you have less to override. (We haven’t defined any font families, for example.)

You can contribute by adding issues.

Monday, January 7th, 2019

CSS-only multiple choice quizzing - Matthew Somerville

In which Matthew disects a multiple choice quiz that uses CSS to do some clever logic, using the :checked pseudo-class and counter-increment.

Oh, and this is how he realised it wasn’t using JavaScript:

I have JavaScript disabled on my phone because a) it cuts out most of the ads, b) it cuts out lots of bandwidth and I have a limited data plan, and c) my battery lasts longer because it’s not processing tons of code to show me some text (cough, Medium).

Saturday, November 17th, 2018

New kilogram standard: how the SI unit of mass is being redefined - Vox

A fascinating look at standards in the real world. In this case, it’s the kilogram, which is shedding its French Revolutionary roots in favour of the Planck constant.

Our messy human measurements have transcended their messy humanness; they have been melded with an eternal truth.

Mention of The Master Of The Kilogram reminded me of The Keeper Of Time.

Tuesday, October 9th, 2018

AddyOsmani.com - Start Performance Budgeting

Great ideas from Addy on where to start with creating a performance budget that can act as a red line you don’t want to cross.

If it’s worth getting fast, it’s worth staying fast.

Thursday, September 20th, 2018

A framework for web performance

Here at Clearleft, we’ve recently been doing some front-end consultancy. That prompted me to jot down thoughts on design principles and performance:

We continued with some more performance work this week. Having already covered some of the nitty-gritty performance tactics like font-loading, image optimisation, etc., we wanted to take a step back and formulate an ongoing strategy for performance.

When it comes to web performance, the eternal question is “What should we measure?” The answer to that question will determine where you then concentrate your efforts—whatever it is your measuring, that’s what you’ll be looking to improve.

I started by drawing a distinction between measurements of quantities and measurements of time. Quantities are quite easy to measure. You can measure these quantities using nothing more than browser dev tools:

  • overall file size (page weight + assets), and
  • number of requests.

I think it’s good to measure these quantities, and I think it’s good to have a performance budget for them. But I also think they’re table stakes. They don’t actually tell you much about the impact that performance is having on the user experience. For that, we need to enumerate moments in time:

  • time to first byte,
  • time to first render,
  • time to first meaningful paint, and
  • time to first meaningful interaction.

There’s one more moment in time, which is the time until DOM content is loaded. But I’m not sure that has a direct effect on how performance is perceived, so it feels like it belongs more in the category of quantities than time.

Next, we listed out all the factors that could affect each of the moments in time. For example, the time to first byte depends on the speed of the network that the user is on. It also depends on how speedily your server (or Content Delivery Network) can return a response. Meanwhile, time to first render is affected by the speed of the user’s network, but it’s also affected by how many blocking elements are on the critical path.

By listing all the factors out, we can draw a distinction between the factors that are outside of our control, and the factors that we can do something about. So while we might not be able to do anything about the speed of the user’s network, we might well be able to optimise the speed at which our server returns a response, or we might be able to defer some assets that are currently blocking the critical path.

Factors
1st byte
  • server speed
  • network speed
1st render
  • network speed
  • critical path assets
1st meaningful paint
  • network speed
  • font-loading strategy
  • image optimisation
1st meaningful interaction
  • network speed
  • device processing power
  • JavaScript size

So far, everything in our list of performance-affecting factors is related to the first visit. It’s worth drawing up a second list to document all the factors for subsequent visits. This will look the same as the list for first visits, but with the crucial difference that caching now becomes a factor.

First visit factors Repeat visit factors
1st byte
  • server speed
  • network speed
  • server speed
  • network speed
  • caching
1st render
  • network speed
  • critical path assets
  • network speed
  • critical path assets
  • caching
1st meaningful paint
  • network speed
  • font-loading strategy
  • image optimisation
  • network speed
  • font-loading strategy
  • image optimisation
  • caching
1st meaningful interaction
  • network speed
  • device processing power
  • JavaScript size
  • network speed
  • device processing power
  • JavaScript size
  • caching

Alright. Now it’s time to get some numbers for each of the four moments in time. I use Web Page Test for this. Choose a realistic setting, like 3G on an Android from the East coast of the USA. Under advanced settings, be sure to select “First View and Repeat View” so that you can put those numbers in two different columns.

Here are some numbers for adactio.com:

First visit time Repeat visit time
1st byte 1.476 seconds 1.215 seconds
1st render 2.633 seconds 1.930 seconds
1st meaningful paint 2.633 seconds 1.930 seconds
1st meaningful interaction 2.868 seconds 2.083 seconds

I’m getting the same numbers for first render as first meaningful paint. That tells me that there’s no point in trying to optimise my font-loading, for example …which makes total sense, because adactio.com isn’t using any web fonts. But on a different site, you might see a big gap between those numbers.

I am seeing a gap between time to first byte and time to first render. That tells me that I might be able to get some blocking requests off the critical path. Sure enough, I’m currently referencing an external stylesheet in the head of adactio.com—if I were to inline critical styles and defer the loading of that stylesheet, I should be able to narrow that gap.

A straightforward site like adactio.com isn’t going to have much to worry about when it comes to the time to first meaningful interaction, but on other sites, this can be a significant bottleneck. If you’re sending UI elements in the initial HTML, but then waiting for JavaScript to “hydrate” those elements into working, the user can end up in an uncanny valley of tapping on page elements that look fine, but aren’t ready yet.

My point is, you’re going to see very different distributions of numbers depending on the kind of site you’re testing. There’s no one-size-fits-all metric to focus on.

Now that you’ve got numbers for how your site is currently performing, you can create two new columns: one of those is a list of first-visit targets, the other is a list of repeat-visit targets for each moment in time. Try to keep them realistic.

For example, if I could reduce the time to first render on adactio.com by 0.5 seconds, my goals would look like this:

First visit goal Repeat visit goal
1st byte 1.476 seconds 1.215 seconds
1st render 2.133 seconds 1.430 seconds
1st meaningful paint 2.133 seconds 1.430 seconds
1st meaningful interaction 2.368 seconds 1.583 seconds

See how the 0.5 seconds saving cascades down into the other numbers?

Alright! Now I’ve got something to aim for. It might also be worth having an extra column to record which of the moments in time are high priority, which are medium priority, and which are low priority.

Priority
1st byte Medium
1st render High
1st meaningful paint Low
1st meaningful interaction Low

Your goals and priorities may be quite different.

I think this is a fairly useful framework for figuring out where to focus when it comes to web performance. If you’d like to give it a go, I’ve made a web performance chart for you to print out and fill in. Here’s a PDF version if that’s easier for printing. Or you can download the HTML version if you want to edit it.

I have to say, I’m really enjoying the front-end consultancy work we’ve been doing at Clearleft around performance and related technologies, like offline functionality. I’d like to do more of it. If you’d like some help in prioritising performance at your company, please get in touch. Let’s make the web faster together.

Friday, September 14th, 2018

Breaking the Deadlock Between User Experience and Developer Experience · An A List Apart Article

Yes! Yes! Yes!

Our efforts to measure and improve UX are packed with tragically ironic attempts to love our users: we try to find ways to improve our app experiences by bloating them with analytics, split testing, behavioral analysis, and Net Promoter Score popovers. We stack plugins on top of third-party libraries on top of frameworks in the name of making websites “better”—whether it’s something misguided, like adding a carousel to appease some executive’s burning desire to get everything “above the fold,” or something truly intended to help people, like a support chat overlay. Often the net result is a slower page load, a frustrating experience, and/or (usually “and”) a ton of extra code and assets transferred to the browser.

Even tools that are supposed to help measure performance in order to make improvements—like, say, Real User Monitoring—require you to add a script to your web pages …thereby increasing the file size and degrading performance! It’s ironic, in that Alanis Morissette sense of not understanding what irony is.

Stacking tools upon tools may solve our problems, but it’s creating a Jenga tower of problems for our users.

This is a great article about evaluating technology.

Thursday, September 6th, 2018

Unit deconverter - make your units less useful!

Take a perfectly useful standardised measurement of length, weight, speed or time, and convert to something far less useful (but much more fun).

Tuesday, March 6th, 2018

Brendan Dawes - Back your sh*t up!

My back-up strategy is similar to Brendan’s (using Super Duper and Backblaze):

In backup parlance there’s a thing called 3-2-1. That is, you should three copies of your files — two locally on different devices and one off site.

But I only do my local back-ups once a week (eek!)—I should do better.

Thursday, December 21st, 2017

Net Promoter Score Considered Harmful (and What UX Professionals Can Do About It)

Jared’s spot-on takedown of Net Promoter Scores.

(Andy feels this is like criticising GDP, but GDP measures something that actually happened, whereas NPS, like horoscopes or tea-leaf readings, rely on clairvoyance.)

Wednesday, November 15th, 2017

Relative Requirements – CSS Wizardry

I really like this exercise by Harry. I’ve done similar kinds of grading using dot-voting in the past. It feels like an early step to establishing design principles: “this over that.”

By deciding what we value up-front, we have an agreement that we can look back on in order to help us settle these conflicts and get us back on track again.

Relative Requirements remove the personal aspect of these disagreements and instead focuses on more objective agreements that we made as a team.

Monday, September 25th, 2017

Why it’s tricky to measure Server-side Rendering performance

A good analysis, but my takeaway was that the article could equally be called Why it’s tricky to measure Client-side Rendering performance. In a nutshell, just looking at metrics can be misleading.

Pre-classified metrics are a good signal for measuring performance. At the end of the day though, they may not properly reflect your site’s performance story. Profile each possibility and give it the eye test.

And it’s always worth bearing this in mind:

The best way to prioritize content by building a static site. Ask yourself if the content needs JavaScript.

Tuesday, May 30th, 2017

Checking in at Indie Web Camp Nuremberg

Once I finished my workshop on evaluating technology I stayed in Nuremberg for that weekend’s Indie Web Camp.

IndieWebCamp Nuremberg

Just as with Indie Web Camp Düsseldorf the weekend before, it was a fun two days—one day of discussions, followed by one day of making.

IndieWebCamp Nuremberg IndieWebCamp Nuremberg IndieWebCamp Nuremberg IndieWebCamp Nuremberg

I spent most of the second day playing around with a new service that Aaron created called OwnYourSwarm. It’s very similar to his other service, OwnYourGram. Whereas OwnYourGram is all about posting pictures from Instagram to your own site, OwnYourSwarm is all about posting Swarm check-ins to your own site.

Usually I prefer to publish on my own site and then push copies out to other services like Twitter, Flickr, etc. (POSSE—Publish on Own Site, Syndicate Elsewhere). In the case of Instagram, that’s impossible because of their ludicrously restrictive API, so I have go the other way around (PESOS—Publish Elsewhere, Syndicate to Own Site). When it comes to check-ins, I could do it from my own site, but I’d have to create my own databases of places to check into. I don’t fancy that much (yet) so I’m using OwnYourSwarm to PESOS check-ins.

The great thing about OwnYourSwarm is that I didn’t have to do anything. I already had the building blocks in place.

First of all, I needed some way to authenticate as my website. IndieAuth takes care of all that. All I needed was rel="me" attributes pointing from my website to my profiles on Twitter, Flickr, Github, or any other services that provide OAuth. Then I can piggyback on their authentication flow (this is also how you sign in to the Indie Web wiki).

The other step is more involved. My site needs to provide an API endpoint so that services like OwnYourGram and OwnYourSwarm can post to it. That’s where micropub comes in. You can see the code for my minimal micropub endpoint if you like. If you want to test your own micropub endpoint, check out micropub.rocks—the companion to webmention.rocks.

Anyway, I already had IndieAuth and micropub set up on my site, so all I had to do was log in to OwnYourSwarm and I immediately started to get check-ins posted to my own site. They show up the same as any other note, so I decided to spend my time at Indie Web Camp Nuremberg making them look a bit different. I used Mapbox’s static map API to show an image of the location of the check-in. What’s really nice is that if I post a photo on Swarm, that gets posted to my own site too. I had fun playing around with the display of photo+map on my home page stream. I’ve made a page for keeping track of check-ins too.

All in all, a fun way to spend Indie Web Camp Nuremberg. But when it came time to demo, the one that really impressed me was Amber’s. She worked flat out on her site, getting to the second level on IndieWebify.me …including sending a webmention to my site!

IndieWebCamp Nuremberg