Tags: standard

683

sparkline

Tuesday, October 20th, 2020

Standards processing

I’ve been like a dog with a bone the way I’ve been pushing for a declarative option for the Web Share API in the shape of button type=“share”. It’s been an interesting window into the world of web standards.

The story so far…

That’s the situation currently. The general consensus seems to be that it’s probably too soon to be talking about implementation at this stage—the Web Share API itself is still pretty new—but gathering data to inform future work is good.

In planning for the next TPAC meeting (the big web standards gathering), Marcos summarised the situation like this:

Not blocking: but a proposal was made by @adactio to come up with a declarative solution, but at least two implementers have said that now is not the appropriate time to add such a thing to the spec (we need more implementation experience + and also to see how devs use the API) - but it would be great to see a proposal incubated at the WICG.

Now this where things can get a little confusing because it used to be that if you wanted to incubate a proposal, you’d have to do on Discourse, which is a steaming pile of crap that requires JavaScript in order to put text on a screen. But Šime pointed out that proposals can now be submitted on Github.

So that’s where I’ve submitted my proposal, linking through to the explainer document.

Like I said, I’m not expecting anything to happen anytime soon, but it would be really good to gather as much data as possible around existing usage of the Web Share API. If you’re using it, or you know anyone who’s using it, please, please, please take a moment to provide a quick description. And if you could help spread the word to get that issue in front of as many devs as possible, I’d be very grateful.

(Many thanks to everyone who’s already contributed to that issue—much appreciated!)

Monday, October 19th, 2020

Continuous partial browser support

Vendor prefixes didn’t work. The theory was sound. It was a way of marking CSS and JavaScript features as being experimental. Developers could use the prefixed properties as long as they understood that those features weren’t to be relied upon.

That’s not what happened though. Developers used vendor-prefixed properties as though they were stable. Tutorials were published that basically said “Go ahead and use these vendor-prefixed properties and ship it!” There were even tools that would add the prefixes for you so you didn’t have to type them out for yourself.

Browsers weren’t completely blameless either. Long after features were standardised, they would only be supported in their prefixed form. Apple was and is the worst for this. To this day, if you want to use the clip-path property in your CSS, you’ll need to duplicate your declaration with -webkit-clip-path if you want to support Safari. It’s been like that for seven years and counting.

Like capitalism, vendor prefixes were one of those ideas that sounded great in theory but ended up being unworkable in practice.

Still, developers need some way to get their hands on experiment features. But we don’t want browsers to ship experimental features without some kind of safety mechanism.

The current thinking involves something called origin trials. Here’s the explainer from Microsoft Edge and here’s Google Chrome’s explainer:

  • Developers are able to register for an experimental feature to be enabled on their origin for a fixed period of time measured in months. In exchange, they provide us their email address and agree to give feedback once the experiment ends.
  • Usage of these experiments is constrained to remain below Chrome’s deprecation threshold (< 0.5% of all Chrome page loads) by a system which automatically disables the experiment on all origins if this threshold is exceeded.

I think it works pretty well. If you’re really interested in kicking the tyres on an experimental feature, you can opt in to the origin trial. But it’s very clear that you wouldn’t want to ship it to production.

That said…

You could ship something that’s behind an origin trial, but you’d have to make sure you’re putting safeguards in place. At the very least, you’d need to do feature detection. You certainly couldn’t use an experimental feature for anything mission critical …but you could use it as an enhancement.

And that is a pretty great way to think about all web features, experimental or otherwise. Don’t assume the feature will be supported. Use feature detection (or @supports in the case of CSS). Try to use the feature as an enhancement rather than a dependency.

If you treat all browser features as though they’re behind an origin trial, then suddenly the landscape of browser support becomes more navigable. Instead of looking at the support table for something on caniuse.com and thinking, “I wish more browsers supported this feature so that I could use it!”, you can instead think “I’m going to use this feature today, but treat it as an experimental feature.”

You can also do it for well-established features like querySelector, addEventListener, and geolocation. Instead of assuming that browser support is universal, it doesn’t hurt to take a more defensive approach. Assume nothing. Acknowledge and embrace unpredictability.

The debacle with vendor prefixes shows what happens if we treat experimental features as though they’re stable. So let’s flip that around. Let’s treat stable features as though they’re experimental. If you cultivate that mindset, your websites will be more robust and resilient.

Tuesday, October 13th, 2020

Feds may target Google’s Chrome browser for breakup - POLITICO

The unfair collusion between Google AMP and Google Search might just bite ‘em on the ass.

Thursday, October 8th, 2020

Parties and browsers

Tess calls for more precise language—like “site” and “origin”—when talking about browsers and resources:

When talking about web features with security or privacy impact, folks often talk about “first parties” and “third parties”. Everyone sort of knows what we mean when we use these terms, but it turns out that we often mean different things, and what we each think these terms mean usually doesn’t map cleanly onto the technical mechanisms browsers actually use to distinguish different actors for security or privacy purposes.

Personally, rather than say “third-party JavaScript”, I prefer the more squirm-inducing and brutually honest phrase “other people’s JavaScript”.

Monday, October 5th, 2020

The reason for a share button type

If you’re at all interested in what I wrote about a declarative Web Share API—and its sequel, a polyfill for button type=”share”—then you might be interested in an explainer document I’ve put together.

It’s a useful exercise for me to enumerate the reasoning for button type=“share” in one place. If you have any feedback, feel free to fork it or create an issue.

The document is based on my initial blog posts and the discussion that followed in this issue on the repo for the Web Share API. In that thread I got some pushback from Marcos. There are three points he makes. I think that two of them lack merit, but the third one is actually spot on.

Here’s the first bit of pushback:

Apart from placing a button in the content, I’m not sure what the proposal offers over what (at least one) browser already provides? For instance, Safari UI already provides a share button by default on every page

But that is addressed in the explainer document for the Web Share API itself:

The browser UI may not always be available, e.g., when a web app has been installed as a standalone/fullscreen app.

That’s exactly what I wanted to address. Browser UI is not always available and as progressive web apps become more popular, authors will need to provide a way for users to share the current URL—something that previously was handled by browsers.

That use-case of sharing the current page leads nicely into the second bit of pushback:

The API is specialized… using it to share the same page is kinda pointless.

But again, the explainer document for the Web Share API directly contradicts this:

Sharing the page’s own URL (a very common case)…

Rather than being a difference of opinion, this is something that could be resolved with data. I’d really like to find out how people are currently using the Web Share API. How much of the current usage falls into the category of “share the current page”? I don’t know the best way to gather this data though. If you have any ideas, let me know. I’ve started an issue where you can share how you’re using the Web Share API. Or if you’re not using the Web Share API, but you know someone who is, please let them know.

Okay, so those first two bits of pushback directly contradict what’s in the explainer document for the Web Share API. The third bit of pushback is more philosophical and, I think, more interesting.

The Web Share API explainer document does a good job of explaining why a declarative solution is desirable:

The link can be placed declaratively on the page, with no need for a JavaScript click event handler.

That’s also my justification for having a declarative alternative: it would be easier for more people to use. I said:

At a fundamental level, declarative technologies have a lower barrier to entry than imperative technologies.

But Marcos wrote:

That’s demonstrably false and a common misconception: See OWL, XForms, SVG, or any XML+namespace spec. Even HTML is poorly understood, but it just happens to have extremely robust error recovery (giving the illusion of it being easy). However, that’s not a function of it being “declarative”.

He’s absolutely right.

It’s not so much that I want a declarative option—I want an option that has robust error recovery. After all, XML is a declarative language but its error handling is as strict as an imperative language like JavaScript: make one syntactical error and nothing works. XML has a brittle error-handling model by design. HTML and CSS have extremely robust error recovery by design. It’s that error-handling model that gives HTML and CSS their robustness.

I’ve been using the word “declarative” when I actually meant “robust in handling errors”.

I guess that when I’ve been talking about “a declarative solution”, I’ve been thinking in terms of the three languages parsed by browsers: HTML, CSS, and JavaScript. Two of those languages are declarative, and those two also happen to have much more forgiving error-handling than the third language. That’s the important part—the error handling—not the fact that they’re declarative.

I’ve been using “declarative” as a shorthand for “either HTML or CSS”, but really I should try to be more precise in my language. The word “declarative” covers a wide range of possible languages, and not all of them lower the barrier to entry. A declarative language with a brittle error-handling model is as daunting as an imperative language.

I should try to use a more descriptive word than “declarative” when I’m describing HTML or CSS. Resilient? Robust?

With that in mind, button type=“share” is worth pursuing. Yes, it’s a declarative option for using the Web Share API, but more important, it’s a robust option for using the Web Share API.

I invite you to read the explainer document for a share button type and I welcome your feedback …especially if you’re currently using the Web Share API!

Thursday, October 1st, 2020

share-button-type/explainer.md

If you’ve been following my recent blog posts about a declarative option for the Web Share API, you might be interested in this explainer document I’ve put together. It outlines the use case for button type="share".

What is happening to our digital archives?

Employing the principle of least power for better digital preservation:

New frameworks and technologies spring up to try and cope with the speed of change. More and more ways to build and release things faster and cheaper becomes the norm. And, the more this happens, the more we deviate from standards: good ol’ HTML and CSS.

Wednesday, September 16th, 2020

A polyfill for button type=”share”

After writing about a declarative Web Share API here yesterday I thought I’d better share the idea (see what I did there?).

I opened an issue on the Github repo for the spec.

(I hope that’s the right place for this proposal. I know that in the past ideas were kicked around on the Discourse site for Web platform Incubator Community Group but I can’t stand Discourse. It literally requires JavaScript to render anything to the screen even though the entire content is text. If it turns out that that is the place I should’ve posted, I guess I’ll hold my nose and do it using the most over-engineered reinvention of the browser I’ve ever seen. But I believe that the plan is for WICG to migrate proposals to Github anyway.)

I also realised that, as the JavaScript Web Share API already exists, I can use it to polyfill my suggestion for:

<button type="share">

The polyfill also demonstrates how feature detection could work. Here’s the code.

This polyfill takes an Inception approach to feature detection. There are three nested levels:

  1. This browser supports button type="share". Great! Don’t do anything. Otherwise proceed to level two.
  2. This browser supports the JavaScript Web Share API. Use that API to share the current page URL and title. Otherwise proceed to level three.
  3. Use a mailto: link to prefill an email with the page title as the subject and the URL in the body. Ya basic!

The idea is that, as long as you include the 20 lines of polyfill code, you could start using button type="share" in your pages today.

I’ve made a test page on Codepen. I’m just using plain text in the button but you could use a nice image or SVG or combination. You can use the Codepen test page to observe two of the three possible behaviours browsers could exhibit:

  1. A browser supports button type="share". Currently that’s none because I literally made this shit up yesterday.
  2. A browser supports the JavaScript Web Share API. This is Safari on Mac, Edge on Windows, Safari on iOS, and Chrome, Samsung Internet, and Firefox on Android.
  3. A browser supports neither button type="share" nor the existing JavaScript Web Share API. This is Firefox and Chrome on desktop (and Edge if you’re on a Mac).

See the Pen Polyfill for button type=”share" by Jeremy Keith (@adactio) on CodePen.

The polyfill doesn’t support Internet Explorer 11 or lower because it uses the DOM closest() method. Feel free to fork and rewrite if you need to support old IE.

Tuesday, September 15th, 2020

A declarative Web Share API

I’ve written about the Web Share API before. It’s a handy little bit of JavaScript that—if supported—brings up a system-level way of sharing a page. Seeing as it probably won’t be long before we won’t be able to see full URLs in browsers anymore, it’s going to fall on us as site owners to provide this kind of fundamental access.

Right now the Web Share API exists entirely in JavaScript. There are quite a few browser APIs like that, and it always feels like a bit of a shame to me. Ideally there should be a JavaScript API and a declarative option, even if the declarative option isn’t as powerful.

Take form validation. To cover the most common use cases, you probably only need to use declarative markup like input type="email" or the required attribute. But if your use case gets a bit more complicated, you can reach for the Constraint Validation API in JavaScript.

I like that pattern. I wish it were an option for JavaScript-only APIs. Take the Geolocation API, for example. Right now it’s only available through JavaScript. But what if there were an input type="geolocation" ? It wouldn’t cover all use cases, but it wouldn’t have to. For the simple case of getting someone’s location (like getting someone’s email or telephone number), it would do. For anything more complex than that, that’s what the JavaScript API is for.

I was reminded of this recently when Ada Rose Cannon tweeted:

It really feels like there should be a semantic version of the share API, like a mailto: link

I think she’s absolutely right. The Web Share API has one primary use case: let the user share the current page. If that use case could be met in a declarative way, then it would have a lower barrier to entry. And for anyone who needs to do something more complicated, that’s what the JavaScript API is for.

But Pete LePage asked:

How would you feature detect for it?

Good question. With the JavaScript API you can do feature detection—if the API isn’t supported you can either bail or provide your own implementation.

There a few different ways of extending HTML that allow you to provide a fallback for non-supporting browsers.

You could mint a new element with a content model that says “Browsers, if you do support this element, ignore everything inside the opening and closing tags.” That’s the way that the canvas element works. It’s the same for audio and video—they ignore everything inside them that isn’t a source element. So developers can provide a fallback within the opening and closing tags.

But forging a new element would be overkill for something like the Web Share API (or Geolocation). There are more subtle ways of extending HTML that I’ve already alluded to.

Making a new element is a lot of work. Making a new attribute could also be a lot of work. But making a new attribute value might hit the sweet spot. That’s why I suggested something like input type="geolocation" for the declarative version of the Geolocation API. There’s prior art here; this is how we got input types for email, url, tel, color, date, etc. The key piece of behaviour is that non-supporting browsers will treat any value they don’t understand as “text”.

I don’t think there should be input type="share". The action of sharing isn’t an input. But I do think we could find an existing HTML element with an attribute that currently accepts a list of possible values. Adding one more value to that list feels like an inexpensive move.

Here’s what I suggested:

<button type=”share” value=”title,text”>

For non-supporting browsers, it’s a regular button and needs polyfilling, no different to the situation with the JavaScript API. But if supported, no JS needed?

The type attribute of the button element currently accepts three possible values: “submit”, “reset”, or “button”. If you give it any other value, it will behave as though you gave it a type of “submit” or “button” (depending on whether it’s in a form or not) …just like an unknown type value on an input element will behave like “text”.

If a browser supports button type="share”, then when the user clicks on it, the browser can go “Right, I’m handing over to the operating system now.”

There’s still the question of how to pass data to the operating system on what gets shared. Currently the JavaScript API allows you to share any combination of URL, text, and description.

Initially I was thinking that the value attribute could be used to store this data in some kind of key/value pairing, but the more I think about it, the more I think that this aspect should remain the exclusive domain of the JavaScript API. The declarative version could grab the current URL and the value of the page’s title element and pass those along to the operating system. If you need anything more complex than that, use the JavaScript API.

So what I’m proposing is:

<button type="share">

That’s it.

But how would you test for browser support? The same way as you can currently test for supported input types. Make use of the fact that an element’s attribute value and an element’s property value (which 99% of the time are the same), will be different if the attribute value isn’t supported:

var testButton = document.createElement("button");
testButton.setAttribute("type","share");
if (testButton.type != "share") {
// polyfill
}

So that’s my modest proposal. Extend the list of possible values for the type attribute on the button element to include “share” (or something like that). In supporting browsers, it triggers a very bare-bones handover to the OS (the current URL and the current page title). In non-supporting browsers, it behaves like a button currently behaves.

Monday, September 7th, 2020

What is the Value of Browser Diversity? - daverupert.com

I’ve thought about these questions for over a year and narrowed my feelings of browser diversity down to two major value propositions:

  1. Browser diversity keeps the Web deliberately slow
  2. Browser diversity fosters consensus and cooperation over corporate rule

Sunday, August 30th, 2020

The land before modern APIs – Increment: APIs

This is a wonderful tale of spelunking into standards from Darius Kazemi—I had no idea that HTTP status codes have their origin in a hastily made decision in the days of ARPANET.

20 people got together at MIT in 1972 for a weekend workshop. On the second day, a handful of people in a breakout session decided it would be a good idea to standardize error messages between two services for transferring data, even though those two services had not necessarily planned to speak to one another. One thing led to another, and now 404 is synonymous with “I can’t find the thing.”

This story is exactly the kind of layering of technologies that I was getting at in the first chapter of Resilient Web Design.

HTTP status codes are largely an accident of history. The people who came up with them didn’t plan on defining a numerical namespace that would last half a century or work its way into popular culture. You see this pattern over and over in the history of technology.

Monday, August 10th, 2020

Influence

Hidde gave a great talk recently called On the origin of cascades (by means of natural selectors):

It’s been 25 years since the first people proposed a language to style the web. Since the late nineties, CSS lived through years of platform evolution.

It’s a lovely history lesson that reminded me of that great post by Zach Bloom a while back called The Languages Which Almost Became CSS.

The TL;DR timeline of CSS goes something like this:

Håkon and Bert joined forces and that’s what led to the Cascading Style Sheet language we use today.

Hidde looks at how the concept of the cascade evolved from those early days. But there’s another idea in Håkon’s proposal that fascinates me:

While the author (or publisher) often wants to give the documents a distinct look and feel, the user will set preferences to make all documents appear more similar. Designing a style sheet notation that fill both groups’ needs is a challenge.

The proposed solution is referred to as “influence”.

The user supplies the initial sheet which may request total control of the presentation, but — more likely — hands most of the influence over to the style sheets referenced in the incoming document.

So an author could try demanding that their lovely styles are to be implemented without question by specifying an influence of 100%. The proposed syntax looked like this:

h1.font.size = 24pt 100%

More reasonably, the author could specify, say, 40% influence:

h2.font.size = 20pt 40%

Here, the requested influence is reduced to 40%. If a style sheet later in the cascade also requests influence over h2.font.size, up to 60% can be granted. When the document is rendered, a weighted average of the two requests is calculated, and the final font size is determined.

Okay, that sounds pretty convoluted but then again, so is specificity.

This idea of influence in CSS reminds me of Cap’s post about The Sliding Scale of Giving a Fuck:

Hold on a second. I’m like a two-out-of-ten on this. How strongly do you feel?

I’m probably a six-out-of-ten, I replied after a couple moments of consideration.

Cool, then let’s do it your way.

In the end, the concept of influence in CSS died out, but user style sheets survived …for a while. Now they too are as dead as a dodo. Most people today aren’t aware that browsers used to provide a mechanism for applying your own visual preferences for browsing the web (kind of like Neopets or MySpace but for literally every single web page …just think of how empowering that was!).

Even if you don’t mourn the death of user style sheets—you can dismiss them as a power-user feature—I think it’s such a shame that the concept of shared influence has fallen by the wayside. Web design today is dictatorial. Designers and developers issue their ultimata in the form of CSS, even though technically every line of CSS you write is a suggestion to a web browser—not a demand.

I wish that web design were more of a two-way street, more of a conversation between designer and end user.

There are occassional glimpses of this mindset. Like I said when I added a dark mode to my website:

Y’know, when I first heard about Apple adding dark mode to their OS—and also to CSS—I thought, “Oh, great, Apple are making shit up again!” But then I realised that, like user style sheets, this is one more reminder to designers and developers that they don’t get the last word—users do.

Friday, July 31st, 2020

On the origin of cascades

This is a great talk by Hidde, looking at the history and evolution of cascading style sheets. Right up my alley!

Monday, July 27th, 2020

the Web at a crossroads - Web Directions

John weighs in on the clashing priorities of browser vendors.

Imagine if the web never got CSS. Never got a way to style content in sophisticated ways. It’s hard to imagine its rise to prominence in the early 2000s. I’d not be alone in arguing a similar lack of access to the sort of features inherent to the mobile experience that WebKit and the folks at Mozilla have expressed concern about would (not might) largely consign the Web to an increasingly marginal role.

Friday, July 24th, 2020

MSEdgeExplainers/explainer.md at main · MicrosoftEdge/MSEdgeExplainers

This is great! Ideas for allowing more styling of form controls. I agree with the goals 100% and I like the look of the proposed solutions too.

The team behind this are looking for feedback so be sure to share your thoughts (I’ll probably formulate mine into a blog post).

Tuesday, July 14th, 2020

Accessibility

There’s a new project from Igalia called Open Prioritization:

An experiment in crowd-funding prioritization of new feature implementations for web browsers.

There is some precedent for this. There was a crowd-funding campaign for Yoav Weiss to implement responsive images in Blink a while back. The difference with the Open Prioritization initiative is that it’s also a kind of marketplace for which web standards will get the funding.

Examples include implementing the CSS lab() colour function in Firefox or implementing the :not() pseudo-class in Chrome. There are also some accessibility features like the :focus-visible pseudo-class and the inert HTML attribute.

I must admit, it makes me queasy to see accessibility features go head to head with other web standards. I don’t think a marketplace is the right arena for prioritising accessibility.

I get a similar feeling of discomfort when a presentation or article on accessibility spends a fair bit of time describing the money that can be made by ensuring your website is accessible. I mean, I get it: you’re literally leaving money on the table if you turn people away. But that’s not the reason to ensure your website is accessible. The reason to ensure that your website is accessible is that it’s the right thing to do.

I know that people are uncomfortable with moral arguments, but in this case, I believe it’s important that we keep sight of that.

I understand how it’s useful to have the stats and numbers to hand should you need to convince a sociopath in your organisation, but when numbers are used as the justification, you’re playing the numbers game from then on. You’ll probably have to field questions like “Well, how many screen reader users are visiting our site anyway?” (To which the correct answer is “I don’t know and I don’t care”—even if the number is 1, the website should still be accessible because it’s the right thing to do.)

It reminds of when I was having a discussion with a god-bothering friend of mine about the existence or not of a deity. They made the mistake of trying to argue the case for God based on logic and reason. Those arguments didn’t hold up. But had they made their case based on the real reason for their belief—which is faith—then their position would have been unassailable. I literally couldn’t argue against faith. But instead, by engaging in the rules of logic and reason, they were applying the wrong justification to their stance.

Okay, that’s a bit abstract. How about this…

In a similar vein to talks or articles about accessibility, talks or articles about diversity often begin by pointing out the monetary gain to be had. It’s true. The data shows that companies that are more diverse are also more profitable. But again, that’s not the reason for having a diverse group of people in your company. The reason for having a diverse group of people in your company is that it’s the right thing to do. If you tie the justification for diversity to data, then what happens should the data change? If a new study showed that diverse companies were less profitable, is that a reason to abandon diversity? Absolutely not! If your justification isn’t tied to numbers, then it hardly matters what the numbers say (though it does admitedly feel good to have your stance backed up).

By the way, this is also why I don’t think it’s a good idea to “sell” design systems on the basis of efficiency and cost-savings if the real reason you’re building one is to foster better collaboration and creativity. The fundamental purpose of a design system needs to be shared, not swapped out based on who’s doing the talking.

Anyway, back to accessibility…

A marketplace, to me, feels like exactly the wrong kind of place for accessibility to defend its existence. By its nature, accessibility isn’t a mainstream issue. I mean, think about it: it’s good that accessibility issues affect a minority of people. The fewer, the better. But even if the number of people affected by accessibility were to trend downwards and dwindle, the importance of accessibility should remain unchanged. Accessibility is important regardless of the numbers.

Look, if I make a website for a client, I don’t offer accessibility as a line item with a price tag attached. I build in accessibility by default because it’s the right thing to do. The only way to ensure that accessibility doesn’t get negotiated away is to make sure it’s not up for negotiation.

So that’s why I feel uncomfortable seeing accessibility features in a popularity contest.

I think that markets are great. I think competition is great. But I don’t think it works for everything (like, could you imagine applying marketplace economics to healthcare or prisons? Nightmare!). I concur with Iain M. Banks:

The market is a good example of evolution in action; the try-everything-and-see-what- -works approach. This might provide a perfectly morally satisfactory resource-management system so long as there was absolutely no question of any sentient creature ever being treated purely as one of those resources.

If Igalia or Mozilla or Google or Apple implement an accessibility feature because they believe that accessibility is important and deserves prioritisation, that’s good. If they implement the same feature just because it received a lot of votes …that doesn’t strike me as a good thing.

I guess it doesn’t matter what the reason is as long as the end result is the same, right? But I suspect that what we’ll see is that the accessibility features up for bidding on Open Prioritization won’t be the winners.

Open Prioritization by Igalia

An experiment to crowdfund the implementation of web standards in browsers.

I’m not sure how I feel about this.

Thursday, July 9th, 2020

Implementors

The latest newsletter from The History Of The Web is a good one: The Browser Engine That Could. It’s all about the history of browsers and more specifically, rendering engines.

Jay quotes from a 1992 email by Tim Berners-Lee when there was real concern about having too many different browsers. But as history played out, the concern shifted to having too few different browsers.

I wrote about this—back when Edge switched to using Chromium—in a post called Unity where I compared it to political parties:

If you have hundreds of different political parties, that’s not ideal. But if you only have one political party, that’s very bad indeed!

I talked about this some more with Brian and Stuart on the Igalia Chats podcast: Web Ecosystem Health (here’s the mp3 file).

In the discussion we dive deeper into the naunces of browser engine diversity; how it’s not the numbers that matter, but representation. The danger with one dominant rendering engine is that it would reflect one dominant set of priorities.

I think we’re starting to see this kind of battle between different sets of priorities playing out in the browser rendering engine landscape.

Webkit published a list of APIs they won’t be implementing in their current form because of security concerns around fingerprinting. Mozilla is taking the same stand. Google is much more gung-ho about implementing those APIs.

I think it’s safe to say that every implementor wants to ship powerful APIs and ensure security and privacy. The issue is with which gets priority. Using the language of principles and priorities, you could crudely encapsulate Apple and Mozilla’s position as:

Privacy, even over capability.

That design principle would pass the reversibility test. In fact, Google’s position might be represented as:

Capability, even over privacy.

I’m not saying Apple and Mozilla don’t value powerful APIs. I’m not saying Google doesn’t value privacy. I’m saying that Google’s priorities are different to Apple’s and Mozilla’s.

Alas, Alex is saying that Apple and Mozilla don’t value capability:

There is a contingent of browser vendors today who do not wish to expand the web platform to cover adjacent use-cases or meaningfully close the relevance gap that the shift to mobile has opened.

That’s very disappointing. It’s a cheap shot. As cheap as saying that, given Google’s business model, Chrome wouldn’t want to expand the web platform to provide better privacy and security.

Monday, June 15th, 2020

Friday, June 12th, 2020

HTML Tutorial for Beginners 101 (Including HTML5 Tags) - WebsiteSetup

A really great one-page guide to HTML from Bruce. I like his performance-focused intro:

If your site is based on good HTML, it will load fast. Browsers incrementally render HTML—that is, they will display a partially downloaded web page to the user while the browser awaits the remaining files from the server.

Modern fashionable development techniques, such as React, require a lot of JavaScript to be sent to the user. When it’s all downloaded, the user’s device must parse and execute the JavaScript before it can even start to construct the page. On a slow network, or on a cheaper, low-powered device, this can result in an excruciatingly slow load and is a heavy drain on the battery.