Tags: world



Tuesday, September 8th, 2020


Jessica and I went to cinema yesterday.

Normally this wouldn’t be a big deal, but in our current circumstances, it was something of a momentous decision that involved a lot of risk assessment and weighing of the odds. We’ve been out and about a few times, but always to outdoor locations: the beach, a park, or a pub’s beer garden. For the first time, we were evaluating whether or not to enter an indoor environment, which given what we now know about the transmission of COVID-19, is certainly riskier than being outdoors.

But this was a cinema, so in theory, nobody should be talking (or singing or shouting), and everyone would be wearing masks and keeping their distance. Time was also on our side. We were considering a Monday afternoon showing—definitely not primetime. Looking at the website for the (wonderful) Duke of York’s cinema, we could see which seats were already taken. Less than an hour before the start time for the film, there were just a handful of seats occupied. A cinema that can seat a triple-digit number of people was going to be seating a single digit number of viewers.

We got tickets for the front row. Personally, I love sitting in the front row, especially in the Duke of York’s where there’s still plenty of room between the front row and the screen. But I know that it’s generally considered an undesirable spot by most people. Sure enough, the closest people to us were many rows back. Everyone was wearing masks and we kept them on for the duration of the film.

The film was Tenet). We weren’t about to enter an enclosed space for just any ol’ film. It would have to be pretty special—a new Star Wars film, or Denis Villeneuve’s Dune …or a new Christopher Nolan film. We knew it would look good on the big screen. We also knew it was likely to be spoiled for us if we didn’t see it soon enough.

At this point I am sounding the spoiler horn. If you have not seen Tenet yet, abandon ship at this point.

I really enjoyed this film. I understand the criticism that has been levelled at it—too cold, too clinical, too confusing—but I still enjoyed it immensely. I do think you need to be able to enjoy feeling confused if this is going to be a pleasurable experience. The payoff is that there’s an equally enjoyable feeling when things start slotting into place.

The closest film in Christopher Nolan’s back catalogue to Tenet is Inception in terms of twistiness and what it asks of the audience. But in some ways, Tenet is like an inverted version of Inception. In Inception, the ideas and the plot are genuinely complex, but Nolan does a great job in making them understandable—quite a feat! In Tenet, the central conceit and even the overall plot is, in hindsight, relatively straightforward. But Nolan has made it seem more twisty and convuluted than it really is. The ten minute battle at the end, for example, is filled with hard-to-follow twists and turns, but in actuality, it literally doesn’t matter.

The pitch for the mood of this film is that it’s in the spy genre, in the same way that Inception is in the heist genre. Though there’s an argument to be made that Tenet is more of a heist movie than Inception. But in terms of tone, yeah, it’s going for James Bond.

Even at the very end of the credits, when the title of the film rolled into view, it reminded me of the Bond films that would tease “The end of (this film). But James Bond will return in (next film).” Wouldn’t it have been wonderful if the very end of Tenet’s credits finished with “The end of Tenet. But the protagonist will return in …Tenet.”

The pleasure I got from Tenet was not the same kind of pleasure I get from watching a Bond film, which is a simpler, more basic kind of enjoyment. The pleasure I got from Tenet was more like the kind of enjoyment I get from reading smart sci-fi, the kind that posits a “what if?” scenario and isn’t afraid to push your mind in all kinds of uncomfortable directions to contemplate the ramifications.

Like I said, the central conceit—objects or people travelling backwards through time (from our perspective)—isn’t actually all that complex, but the fun comes from all the compounding knock-on effects that build on that one premise.

In the film, and in interviews about the film, everyone is at pains to point out that this isn’t time travel. But that’s not true. In fact, I would argue that Tenet is one of the few examples of genuine time travel. What I mean is that most so-called time-travel stories are actually more like time teleportation. People jump from one place in time to another instaneously. There are only a few examples I can think of where people genuinely travel.

The grandaddy of all time travel stories, The Time Machine by H.G. Wells, is one example. There are vivid descriptions of the world outside the machine playing out in fast-forward. But even here, there’s an implication that from outside the machine, the world cannot perceive the time machine (which would, from that perspective, look slowed down to the point of seeming completely still).

The most internally-consistent time-travel story is Primer. I suspect that the Venn diagram of people who didn’t like Tenet and people who wouldn’t like Primer is a circle. Again, it’s a film where the enjoyment comes from feeling confused, but where your attention will be rewarded and your intelligence won’t be insulted.

In Primer, the protagonists literally travel in time. If you want to go five hours into the past, you have to spend five hours in the box (the time machine).

In Tenet, the time machine is a turnstile. If you want to travel five hours into the past, you need only enter the turnstile for a moment, but then you have to spend the next five hours travelling backwards (which, from your perspective, looks like being in a world where cause and effect are reversed). After five hours, you go in and out of a turnstile again, and voila!—you’ve time travelled five hours into the past.

Crucially, if you decide to travel five hours into the past, then you have always done so. And in the five hours prior to your decision, a version of you (apparently moving backwards) would be visible to the world. There is never a version of events where you aren’t travelling backwards in time. There is no “first loop”.

That brings us to the fundamental split in categories of time travel (or time jump) stories: many worlds vs. single timeline.

In a many-worlds story, the past can be changed. Well, technically, you spawn a different universe in which events unfold differently, but from your perspective, the effect would be as though you had altered the past.

The best example of the many-worlds category in recent years is William Gibson’s The Peripheral. It genuinely reinvents the genre of time travel. First of all, no thing travels through time. In The Peripheral only information can time travel. But given telepresence technology, that’s enough. The Peripheral is time travel for the remote worker (once again, William Gibson proves to be eerily prescient). But the moment that any information travels backwards in time, the timeline splits into a new “stub”. So the many-worlds nature of its reality is front and centre. But that doesn’t stop the characters engaging in classic time travel behaviour—using knowledge of the future to exert control over the past.

Time travel stories are always played with a stacked deck of information. The future has power over the past because of the asymmetric nature of information distribution—there’s more information in the future than in the past. Whether it’s through sports results, the stock market or technological expertise, the future can exploit the past.

Information is at the heart of the power games in Tenet too, but there’s a twist. The repeated mantra here is “ignorance is ammunition.” That flies in the face of most time travel stories where knowledge—information from the future—is vital to winning the game.

It turns out that information from the future is vital to winning the game in Tenet too, but the reason why ignorance is ammunition comes down to the fact that Tenet is not a many-worlds story. It is very much a single timeline.

Having a single timeline makes for time travel stories that are like Greek tragedies. You can try travelling into the past to change the present but in doing so you will instead cause the very thing you set out to prevent.

The meat’n’bones of a single timeline time travel story—and this is at the heart of Tenet—is the question of free will.

The most succint (and disturbing) single-timeline time-travel story that I’ve read is by Ted Chiang in his recent book Exhalation. It’s called What’s Expected Of Us. It was originally published as a single page in Nature magazine. In that single page is a distillation of the metaphysical crisis that even a limited amount of time travel would unleash in a single-timeline world…

There’s a box, the Predictor. It’s very basic, like Claude Shannon’s Ultimate Machine. It has a button and a light. The button activates the light. But this machine, like an inverted object in Tenet, is moving through time differently to us. In this case, it’s very specific and localised. The machine is just a few seconds in the future relative to us. Cause and effect seem to be reversed. With a normal machine, you press the button and then the light flashes. But with the predictor, the light flashes and then you press the button. You can try to fool it but you won’t succeed. If the light flashes, you will press the button no matter how much you tell yourself that you won’t (likewise if you try to press the button before the light flashes, you won’t succeed). That’s it. In one succinct experiment with time, it is demonstrated that free will doesn’t exist.

Tenet has a similarly simple object to explain inversion. It’s a bullet. In an exposition scene we’re shown how it travels backwards in time. The protagonist holds his hand above the bullet, expecting it to jump into his hand as has just been demonstrated to him. He is told “you have to drop it.” He makes the decision to “drop” the bullet …and the bullet flies up into his hand.

This is a brilliant bit of sleight of hand (if you’ll excuse the choice of words) on Nolan’s part. It seems to imply that free will really matters. Only by deciding to “drop” the bullet does the bullet then fly upward. But here’s the thing: the protagonist had no choice but to decide to drop the bullet. We know that he had no choice because the bullet flew up into his hand. The bullet was always going to fly up into his hand. There is no timeline where the bullet doesn’t fly up into his hand, which means there is no timeline where the protagonist doesn’t decide to “drop” the bullet. The decision is real, but it is inevitable.

The lesson in this scene is the exact opposite of what it appears. It appears to show that agency and decision-making matter. The opposite is true. Free will cannot, in any meaningful sense, exist in this world.

This means that there was never really any threat. People from the future cannot change the past (or wipe it out) because it would’ve happened already. At one point, the protagonist voices this conjecture. “Doesn’t the fact that we’re here now mean that they don’t succeed?” Neil deflects the question, not because of uncertainty (we realise later) but because of certainty. It’s absolutely true that the people in the future can’t succeed because they haven’t succeeded. But the protagonist—at this point in the story—isn’t ready to truly internalise this. He needs to still believe that he is acting with free will. As that Ted Chiang story puts it:

It’s essential that you behave as if your decisions matter, even though you know that they don’t.

That’s true for the audience watching the film. If we were to understand too early that everything will work out fine, then there would be no tension in the film.

As ever with Nolan’s films, they are themselves metaphors for films. The first time you watch Tenet, ignorance is your ammuntion. You believe there is a threat. By the end of the film you have more information. Now if you re-watch the film, you will experience it differently, armed with your prior knowledge. But the film itself hasn’t changed. It’s the same linear flow of sequential scenes being projected. Everything plays out exactly the same. It’s you who have been changed. The first time you watch the film, you are like the protagonist at the start of the movie. The second time you watch it, you are like the protagonist at the end of the movie. You see the bigger picture. You understand the inevitability.

The character of Neil has had more time to come to terms with a universe without free will. What the protagonist begins to understand at the end of the film is what Neil has known for a while. He has seen this film. He knows how it ends. It ends with his death. He knows that it must end that way. At the end of the film we see him go to meet his death. Does he make the decision to do this? Yes …but he was always going to make the decision to do this. Just as the protagonist was always going to decide to “drop” the bullet, Neil was always going to decide to go to his death. It looks like a choice. But Neil understands at this point that the choice is pre-ordained. He will go to his death because he has gone to his death.

At the end, the protagonist—and the audience—understands. Everything played out exactly as it had to. The people in the future were hoping that reality allowed for many worlds, where the past could be changed. Luckily for us, reality turns out to be a single timeline. But the price we pay is that we come to understand, truly understand, that we have no free will. This is the kind of knowledge we wish we didn’t have. Ignorance was our ammunition and by the end of the film, it is spent.

Nolan has one other piece of misdirection up his sleeve. He implies that the central question at the heart of this time-travel story is the grandfather paradox. Our descendents in the future are literally trying to kill their grandparents (us). But if they succeed, then they can never come into existence.

But that’s not the paradox that plays out in Tenet. The central paradox is the bootstrap paradox, named for the Heinlein short story, By His Bootstraps. Information in this film is transmitted forwards and backwards through time, without ever being created. Take the phrase “Tenet”. In subjective time, the protagonist first hears of this phrase—and this organisation—when he is at the start of his journey. But the people who tell him this received the information via a subjectively older version of the protagonist who has travelled to the past. The protagonist starts the Tenet organistion (and phrase) in the future because the organisation (and phrase) existed in the past. So where did the phrase come from?

This paradox—the bootstrap paradox—remains after the grandfather paradox has been dealt with. The grandfather paradox was a distraction. The bootstrap paradox can’t be resolved, no matter how many times you watch the same film.

So Tenet has three instances of misdirection in its narrative:

  • Inversion isn’t time travel (it absolutely is).
  • Decisions matter (they don’t; there is no free will).
  • The grandfather paradox is the central question (it’s not; the bootstrap paradox is the central question).

I’m looking forward to seeing Tenet again. Though it can never be the same as that first time. Ignorance can never again be my ammunition.

I’m very glad that Jessica and I decided to go to the cinema to see Tenet. But who am I kidding? Did we ever really have a choice?

Thursday, August 20th, 2020

Web on the beach

It was very hot here in England last week. By late afternoon, the stuffiness indoors was too much to take.

If you can’t stand the heat, get out of the kitchen. That’s exactly what Jessica and I did. The time had come for us to avail of someone else’s kitchen. For the first time in many months, we ventured out for an evening meal. We could take advantage of the government discount scheme with the very unfortunate slogan, “eat out to help out.” (I can’t believe that no one in that meeting said something.)

Just to be clear, we wanted to dine outdoors. The numbers are looking good in Brighton right now, but we’re both still very cautious about venturing into indoor spaces, given everything we know now about COVID-19 transmission.

Fortunately for us, there’s a new spot on the seafront called Shelter Hall Raw. It’s a collective of multiple local food outlets and it has ample outdoor seating.

We found a nice table for two outside. Then we didn’t flag down a waiter.

Instead, we followed the instructions on the table. I say instructions, but it was a bit simpler than that. It was a URL: shelterhall.co.uk (there was also a QR code next to the URL that I could’ve just pointed my camera at, but I’ve developed such a case of QR code blindness that I blanked that out initially).

Just to be clear, under the current circumstances, this is the only way to place an order at this establishment. The only (brief) interaction you’ll have with another persn is when someone brings your order.

It worked a treat.

We had frosty beverages chosen from the excellent selection of local beers. We also had fried chicken sandwiches from Lost Boys chicken, purveyors of the best wings in town.

The whole experience was a testament to what the web can do. You browse the website. You make your choice on the website. You pay on the website (you can create an account but you don’t have to).

Thinking about it, I can see why they chose the web over a native app. Online ordering is the only way to place your order at this place. Telling people “You have to go to this website” …that seems reasonable. But telling people “You have to download this app” …that’s too much friction.

It hasn’t been a great week for the web. Layoffs at Mozilla. Google taking aim at URLs. It felt good to see experience an instance of the web really shining.

And it felt really good to have that cold beer.

Checked in at Shelter Hall Raw. Having a beer on the beach — with Jessica

Friday, July 17th, 2020


Look out someone else’s window somewhere in the world.

There’s something indescribably lovely about this. It’s like a kind of positive voyeurism.

I lost a lot of time to this.

Sunday, May 3rd, 2020


What a time, as they say, to be alive. The Situation is awful in so many ways, and yet…

In this crisis, there is also opportunity—the opportunity to sit on the sofa, binge-watch television and feel good about it! I mean just think about it: when in the history of our culture has there been a time when the choice between running a marathon or going to the gym or staying at home watching TV can be resolved with such certitude? Stay at home and watch TV, of course! It’s the only morally correct choice. Protect the NHS! Save lives! Gorge on box sets!

What you end up watching doesn’t really matter. If you want to binge on Love Island or Tiger King, go for it. At this moment in time, it’s all good.

I had an ancient Apple TV device that served me well for years. At the beginning of The Situation, I decided to finally upgrade to a more modern model so I could get to more streaming services. Once I figured out how to turn off the unbelievably annoying sounds and animations, I got it set up with some subscription services. Should it be of any interest, here’s what I’ve been watching in order to save lives and protect the NHS…

Watchmen, Now TV

Superb! I suspect you’ll want to have read Alan Moore’s classic book to fully enjoy this series set in the parallel present extrapolated from that book’s ‘80s setting. Like that book, what appears to be a story about masked vigilantes is packing much, much deeper themes. I have a hunch that if Moore himself were forced to watch it, he might even offer some grudging approval.

Devs, BBC iPlayer

Ex Machina meets The Social Network in Alex Garland’s first TV show. I was reading David Deutsch while I was watching this, which felt like getting an extra bit of world-building. I think this might have worked better in the snappier context of a film, but it makes for an enjoyable saunter as a series. Style outweighs substance, but the style is strong enough to carry it.

Breeders, Now TV

Genuinely hilarious. Watch the first episode and see how many times you laugh guiltily. It gets a bit more sentimental later on, but there’s a wonderfully mean streak throughout that keeps the laughter flowing. If you are a parent of small children though, this may feel like being in a rock band watching Spinal Tap—all too real.

The Mandalorian, Disney Plus

I cannot objectively evaluate this. I absolutely love it, but that’s no surprise. It’s like it was made for me. The execution of each episode is, in my biased opinion, terrific. Read what Nat wrote about it. I agree with everything they said.

Westworld, Now TV

The third series is wrapping up soon. I’m enjoying this series immensely. It’s got a real cyberpunk sensibility; not in a stupid Altered Carbon kind of way, but in a real Gibsonian bit of noirish fun. Like Devs, it’s not as clever as it thinks it is, but it’s throroughly entertaining all the same.

Tales From The Loop, Amazon Prime

The languid pacing means this isn’t exactly a series of cliffhangers, but it will reward you for staying with it. It avoids the negativity of Black Mirror and instead maintains a more neutral viewpoint on the unexpected effects of technology. At its best, it feels like an updated take on Ray Bradbury’s stories of smalltown America (like the episode directed by Jodie Foster featuring a cameo by Shane Carruth—the time traveller’s time traveller).

Years and Years, BBC iPlayer

A near-future family and political drama by Russell T Davies. Subtlety has never been his strong point and the polemic aspects of this are far too on-the-nose to take seriously. Characters will monologue for minutes while practically waving a finger at you out of the television set. But it’s worth watching for Emma Thompson’s performance as an all-too believable populist politician. Apart from a feelgood final episode, it’s not light viewing so maybe not the best quarantine fodder.

For All Mankind, Apple TV+

An ahistorical space race that’s a lot like Mary Robinette Kowal’s Lady Astronaut books. The initial premise—that Alexei Leonov beats Neil Armstrong to a moon landing—is interesting enough, but it really picks up from episode three. Alas, the baton isn’t really kept up for the whole series; it reverts to a more standard kind of drama from about halfway through. Still worth seeing though. It’s probably the best show on Apple TV+, but that says more about the paucity of the selection on there than it does about the quality of this series.

Avenue Five, Now TV

When it’s good, this space-based comedy is chucklesome but it kind of feels like Armando Iannucci lite.

Picard, Amazon Prime

It’s fine. Michael Chabon takes the world of Star Trek in some interesting directions, but it never feels like it’s allowed to veer too far away from the established order.

The Outsider, Now TV

A tense and creepy Stephen King adaption. I enjoyed the mystery of the first few episodes more than the later ones. Once the supernatural rules are established, it’s not quite as interesting. There are some good performances here, but the series gives off a vibe of believing it’s more important than it really is.

Better Call Saul, Netflix

The latest series (four? I’ve lost count) just wrapped up. It’s all good stuff, even knowing how some of the pieces need to slot into place for Breaking Bad.

Normal People, BBC iPlayer

I heard this was good so I went to the BBC iPlayer app and hit play. “Pretty good stuff”, I thought after watching that episode. Then I noticed that it said Episode Twelve. I had watched the final episode first. Doh! But, y’know, watching from the start, the foreknowledge of how things turn out isn’t detracting from the pleasure at all. In fact, I think you could probably watch the whole series completely out of order. It’s more of a tone poem than a plot-driven series. The characters themselves matter more than what happens to them.

Hunters, Amazon Prime

A silly 70s-set jewsploitation series with Al Pacino. The enjoyment comes from the wish fulfillment of killing nazis, which would be fine except for the way that the holocaust is used for character development. The comic-book tone of the show clashes very uncomfortably with that subject matter. The Shoah is not a plot device. This series feels like what we would get if Tarentino made television (and not in a good way).

Thursday, April 30th, 2020

Et In Silicon Valley Ego – Dr Beth Singler

The parallels between Alex Garland’s Devs and Tom Stoppard’s Arcadia.

Saturday, April 11th, 2020

Jeremy Keith ‘We’ve ruined the Web. Here’s how we fix it.’ - This is HCD

Did you hear the one about two Irishmen on a podcast?

I really enjoyed this back-and-forth discussion with Gerry on performance, waste, and more. We agreed on much, but we also clashed sometimes.

Wednesday, March 11th, 2020

Networked information services: The world-wide web [PDF]

A 1992 paper by Tim Berners-Lee, Robert Cailliau, and Jean-Françoise Groff.

The W3 project is not a research project, but a practical plan to implement a global information system.

A curl in every port

A few years back, Zach Bloom wrote The History of the URL: Path, Fragment, Query, and Auth. He recently expanded on it and republished it on the Cloudflare blog as The History of the URL. It’s well worth the time to read the whole thing. It’s packed full of fascinating tidbits.

In the section on ports, Zach says:

The timeline of Gopher and HTTP can be evidenced by their default port numbers. Gopher is 70, HTTP 80. The HTTP port was assigned (likely by Jon Postel at the IANA) at the request of Tim Berners-Lee sometime between 1990 and 1992.

Ooh, I can give you an exact date! It was January 24th, 1992. I know this because of the hack week in CERN last year to recreate the first ever web browser.

Kimberly was spelunking down the original source code, when she came across this line in the HTUtils.h file:

#define TCP_PORT 80 /* Allocated to http by Jon Postel/ISI 24-Jan-92 */

We showed this to Jean-François Groff, who worked on the original web technologies like libwww, the forerunner to libcurl. He remembers that day. It felt like they had “made it”, receiving the official blessing of Jon Postel (in the same RFC, incidentally, that gave port 70 to Gopher).

Then he told us something interesting about the next line of code:

#define OLD_TCP_PORT 2784 /* Try the old one if no answer on 80 */

Port 2784? That seems like an odd choice. Most of us would choose something easy to remember.

Well, it turns out that 2784 is easy to remember if you’re Tim Berners-Lee.

Those were the last four digits of his parents’ phone number.

The History of the URL

This is a wonderful deep dive into all the parts of a URL:


There’s a lot of great DNS stuff about the host part:

Root DNS servers operate in safes, inside locked cages. A clock sits on the safe to ensure the camera feed hasn’t been looped. Particularily given how slow DNSSEC implementation has been, an attack on one of those servers could allow an attacker to redirect all of the Internet traffic for a portion of Internet users. This, of course, makes for the most fantastic heist movie to have never been made.

Sunday, January 19th, 2020

Mystery Flesh Pit National Park

A Cataloged Archive of Information Relating to the Now Closed Mystery Flesh Pit National Park

Tuesday, December 31st, 2019

Running Code Over Time – Eric’s Archived Thoughts

We should think of our code, even our designs, as running for decades, and alter our work to match.

Thursday, December 12th, 2019

The Server Souvenir: Taking Home Remnants of Virtual Worlds | Platypus

When the game developer Blizzard Entertainment decommissioned some of their server blades to be auctioned off, they turned them into commemorative commodities, adding an etching onto the metal frame with the server’s name (e.g., “Proudmoore” or “Darkspear”), its dates of operation, and an inscription: “within the circuits and hard drive, a world of magic, adventure, and friendship thrived… this server was home to thousands of immersive experiences.” While stripped of their ability to store virtual memory or connect people to an online game world, these servers were valuable and meaningful as worlds and homes. They became repositories of social and spatial memory, souvenirs from WoW.

Thursday, November 7th, 2019

Information mesh

Timelines of people, interfaces, technologies and more:

30 years of facts about the World Wide Web.

Friday, October 18th, 2019

Web talk

At the start of this month I was in Amsterdam for a series of back-to-back events: Indie Web Camp Amsterdam, View Source, and Fronteers. That last one was where Remy and I debuted talk we’d been working on.

The Fronteers folk have been quick off the mark so the video is already available. I’ve also published the text of the talk here:

How We Built The World Wide Web In Five Days

This was a fun talk to put together. The first challenge was figuring out the right format for a two-person talk. It quickly became clear that Remy’s focus would be on the events of the five days we spent at CERN, whereas my focus would be on the history of computing, hypertext, and networks leading up to the creation of the web.

Now, we could’ve just done everything chronologically, but that would mean I’d do the first half of the talk and Remy would do the second half. That didn’t appeal. And it sounded kind of boring. So then we come up with the idea of interweaving the two timelines.

That worked remarkably well. The talk starts with me describing the creation of CERN in the 1950s. Then Remy talks about the first day of the hack week. I then talk about events in the 1960s. Remy talks about the second day at CERN. This continues until we join up about half way through the talk: I’ve arrived at the moment that Tim Berners-Lee first published the proposal for the World Wide Web, and Remy has arrived at the point of having running code.

At this point, the presentation switches gears and turns into a demo. I do not have the fortitude to do a live demo, so this was all down to Remy. He did it flawlessly. I have so much respect for people brave enough to do live demos, and do them well.

But the talk doesn’t finish there. There’s a coda about our return to CERN a month after the initial hack week. This was an opportunity for both of us to close out the talk with our hopes and dreams for the World Wide Web.

I know I’m biased, but I thought the structure of the presentation worked really well: two interweaving timelines culminating in a demo and finishing with the big picture.

There was a forcing function on preparing this presentation: Remy was moving house, and I was already going to be away speaking at some other events. That limited the amount of time we could be in the same place to practice the talk. In the end, I think that might have helped us make the most of that time.

We were both feeling the pressure to tell this story well—it means so much to us. Personally, I found that presenting with Remy made me up my game. Like I said:

It’s been a real treat working with Remy on this. Don’t tell him I said this, but he’s kind of a web hero of mine, so this was a real honour and a privilege for me.

This talk could have easily turned into a boring slideshow of “what we did on our holidays”, but I think we managed to successfully avoid that trap. We’re both proud of this talk and we’d love to give it again some time. If you’d like it at your event, get in touch.

In the meantime, you can read the text, watch the video, or look at the slides (but the slides really don’t make much sense in isolation).

Wednesday, October 16th, 2019

How We Built The World Wide Web In Five Days

This talk about recreating the first ever web browser was a joint presentation with Remy Sharp, delivered at the Fronteers conference in Amsterdam in October 2019.


Our story begins with the Big Bang.

13.8 billion years ago

This sets a chain of events in motion that gives us elementary particles, then more complex particles like atoms, which form stars and planets, including our own, on which life evolves, which brings us to the recent past when this whole process results in the universe generating a way of looking at itself: physicists.

A physicist is the atom’s way of knowing about atoms.

—George Wald

By the end of World War Two, physicists in Europe were in short supply. If they hadn’t already fled during Hitler’s rise to power, they were now being actively wooed away to the United States.

64 years ago

To counteract this brain drain, a coalition of countries forms the European Organization for Nuclear Research, or to use its French acronym, CERN.

They get some land in a suburb of Geneva on the border between Switzerland and France, where they set about smashing particles together and recreating the conditions that existed at the birth of the universe.

The Syncrocyclotron.

Every year, CERN is host to thousands of scientists who come to run their experiments.


Fast forward to February 2019, a group of 9 of us were invited to CERN as an elite group of hackers to recreate a different experiment.

The group.

We are there to recreate a piece of software first published 30 years ago. Given this goal, we need to answer some important questions first:

  • How does this software look and feel?
  • How does it work?
  • How you interact with it?
  • How does it behave?

The software is so old that it doesn’t run on any modern machines, so we have a NeXT machine specially shipped from the nearby museum. This is no ordinary machine. It was one of the only two NeXT machines that existed at CERN in the late 80s.

Now we have the machine to run this special software.

By some fluke the good people of the web have captured several different versions of this software and published them on Github.

So we selected the oldest version we could find. We download it from Github to our computers. Now we have to transfer it to the NeXT machine.

Except there’s no USB drive. It didn’t exist. CD ROM? Floppy drive? The NeXT computer had a “floptical drive”—bespoke to NeXT computers—all very well, but in 2019 we don’t have those drives.

To transfer the software from our machine, to the NEXT machine, we needed to use the network.


62 years ago

In 1957, J.C.R. Licklider was the first person to publicly demonstrate the idea of time sharing: linking one computer to another.

56 years ago

Six years later, he expanded on the idea in a memo that described an Intergalactic Computer Network.

By this time, he was working at ARPA: the department of Defense’s Advanced Research Projects Agency. They were very interested in the idea of linking computers together, for very practical reasons.

America’s military communications had a top-down command-and-control structure. That was a single point of failure. One pre-emptive strike and it’s game over.

The solution was to create a decentralised network of computers that used Paul Baran’s brilliant idea of packet switching to move information around the network without any central authority.

This idea led to the creation of the ARPANET. Initially it connected a few universities. The ARPANET grew until it wasn’t just computers at each endpoint; it was entire networks. It was turning into a network of networks …an internetwork, or internet, for short. In order for these networks to play nicely with one another, they needed to agree on using the same set of protocols for packet switching.

Bob Kahn and Vint Cerf crafted the simplest possible set of low-level protocols: the Transmission Control Protocol and the Internet Protocol. TCP/IP.

TCP/IP is deliberately dumb. It doesn’t care about the contents of the packets of data being passed around the internet. People were then free to create more task-specific protocols to sit on top of TCP/IP.

There are protocols specifically for email, for example. Gopher is another example of a bespoke protocol. And there’s the File Transfer Protocol, or FTP.


Back in our war room in 2019, we finally work out that can use FTP to get the software across. FTP is an arcane protocol, but we can agree that it will work across the two eras.

Although we have to manually install FTP servers onto our machines. FTP doesn’t ship with new machines because it’s generally considered insecure.

Now we finally have the software installed on the NeXT computer and we’re able to run the application.

We double click the shading looking, partly hand drawn icon with a lightning bolt on it, and we wait…

Once the software’s finally running, we’re able to see that it looks a bit like an ancient word processor. We can read, edit and open documents. There’s some basic styles lots of heavy margins. There’s a super weird menu navigation in place.

But there’s something different about this software. Something that makes this more than just a word processor.

These documents, they have links…


Ted Nelson is fond of coining neologisms. You can thank him for words like “intertwingled” and “teledildonics”.

56 years ago

He also coined the word “hypertext” in 1963. It is defined by what it is not.

Hypertext is text which is not constrained to be linear.

Ever played a “choose your own adventure” book? That’s hypertext. You can jump from one point in the book to a different point that has its own unique identifier.

The idea of hypertext predates the word. In 1945, Vannevar Bush published a visionary article in The Atlantic Monthly called As We May Think.

He imagines a mechanical device built into a desk that can summon reams of information stored on microfilm, allowing the user to create “associative trails” as they make connections between different concepts. He calls it the Memex.


Also in 1945, a young American named Douglas Engelbart has been drafted into the navy and is shipping out to the Pacific to fight against Japan. Literally as the ship is leaving the harbour, word comes through that the war is over. He still gets shipped out to the Philippines, but now he’s spending his time lounging in a hut reading magazines. That’s how he comes to read Vannevar Bush’s Memex article, which lodges in his brain.

51 years ago

Douglas Engelbart decides to dedicate his life to building the computer equivalent of the Memex.

On December 9th, 1968, he unveils his oNLine System—NLS—in a public demonstration. Not only does he have a working implementation of hypertext, he also shows collaborative real-time editing, windows, graphics, and oh yeah—for this demo, he invents the mouse.

It truly is The Mother of All Demos.

Douglas Engelbart has a posse.

39 years ago

There were a number of other attempts at creating hypertext systems. In 1980, a young computer scientist named Tim Berners-Lee found himself working at CERN, where scientists were having a heck of time just keeping track of information.

He created a system somewhat like Apple’s Hypercard, but with clickable links. He named it ENQUIRE, after a Victorian book of manners called Enquire Within Upon Everything.

ENQUIRE didn’t work out, but Tim Berners-Lee didn’t give up on the problem of managing information at CERN. He thinks about all the work done before: Vannevar Bush’s Memex; Ted Nelson’s Xanadu project; Douglas Engelbart’s oNLine System.

A lot of hypertext ideas really are similar to a choose-your-own-adventure: jumping around from point to point within a book. But what if, instead of imagining a hypertext book, we could have a hypertext library? Then you could jump from one point in a book to a different point in a different book in a completely different part of the library.

The Library Of Babel

In other words, what if you took the world of hypertext and the world of networks, and you smashed them together?

30 years ago

On the 12th of March, 1989, Tim Berners-Lee circulates the first draft of a document titled Information Management: A Proposal.

The diagrams are incomprehensible. But his supervisor at CERN, Mike Sendall, sees the potential. He reads the proposal and scrawls these words across the top: “vague, but exciting.”

Tim Berners-Lee gets the go-ahead to spend some time on this project. And he gets the budget for a nice shiny NeXT machine. With the support of his colleague Robert Cailliau, Berners-Lee sets about making his theoretical project a reality. They kick around a few ideas for the name.

They thought of calling it The Mesh. They thought of calling it The Information Mine, but Tim rejected that, knowing that whatever they called it, the words would be abbreviated to letters, and The Information Mine would’ve seemed quite egotistical.

So, even though it’s only going to exist on one single computer to begin with, and even though the letters of the abbreviation take longer to say than the words being abbreviated, they call it …the World Wide Web.

As Robert Cailliau told us, they were thinking “Well, we can always change it later.”

Tim Berners-Lee brainstorms a new protocol for hypertext called the HyperText Transfer Protocol—HTTP.

He thinks about a format for hypertext called the Hypertext Markup Language—HTML.

He comes up with an addressing scheme that uses Unique Document Identifiers—UDIs, later renamed to URIs, and later renamed again to URLs.

But he needs to put it all together into running code. And so Tim Berners-Lee sets about writing a piece of software…


Tim Berners-Lee’s document is a proposal at that stage 30 years ago. It’s just theory. So he needs to build a prototype to actually demonstrate how the World Wide Web would work.

The NeXT computer is the perfect ground for rapid software development because the NeXT operating system ships with a program called NSBuilder.


NSBuilder is software to build software. In fact, the “NS” (meaning NeXTSTEP) can be found in existing software today - you’ll find references to NSText in Safari and Mac developer documentation.

Tim Berners-Lee, using NSBuilder was able to create a working prototype of this software in just 6 weeks

He called it: WorldWideWeb.

We finally have the software working the way it ran 30 years ago.

But our project is to replicate this browser so that you can try it out, and see how web pages look through the lens of 1990.

So we enter some of our blog urls. https://remysharp.com, https://adactio.com

But HTTPS doesn’t work. There was no HTTPS. There’s no HTTP2. HTTP1.0 hadn’t even been invented.

So I make a proxy. Effectively a monster-in-the-middle attack on all web requests, stripping the SSL layer and then returning the HTML over the HTTP 0.9 protocol.

And finally, we see…

We see junk.

We can see the text content of the website, but there’s a lot of HTML junk tags being spat out onto the screen, particularly at the start of the document.


<h1> <h2> <h3> <h4> <h5> <h6> 
<ol> <ul> <li> <p>

These tags are probably very familiar to you. You recognise this language, right?

That’s right. It’s SGML.

SGML is the successor to GML, which supposedly stands for Generalised Markup Language. But that may well be a backronym. The format was created by Goldfarb, Mosher, and Lorie: G, M, L.

SGML is supposed to be short for Standard Generalised Markup Language.

A flavour of SGML was already being used at CERN when Tim Berners-Lee was working on his World Wide Web project. Rather than create a whole new format from scratch, he repurposed what people were already familiar with. This was his HyperText Markup Language, HTML.

One thing he did add was a tag called A for anchor.

Its href attribute is short for “hypertext reference”. Plop a URL in there and you’ve got a link.

The hypertext community thought this was a terrible way to make links.

They believed that two-way linking was vital. With two-way linking, the linked resource connects back to where the link originates. So if the linked resource moved, the link would stay intact.

That’s not the case with the World Wide Web. If the linked resource moves, the link is broken.

Perhaps you’ve experienced broken links?

When Tim Berners-Lee wrote the code for his WorldWideWeb browser, there was a grand total of 26 tags in HTML. I know that we’d refer to them as elements today, but that term wasn’t being used back then.

Now there are well over 100 elements in HTML. The reason why the language has been able to expand so much is down to the way web browsers today treat unknown elements: ignore any opening and closing tags you don’t recognise and only render the text in between them.


The parsing algorithm was brittle (when compared to modern parsers). There’s no DOM tree being built up. Indeed, the DOM didn’t exist.

Remember that the WorldWideWeb was a browser that effectively smooshed together a word processor and network requests, the styling method was based (mostly) around adding margins as the tags were parsed.

Kimberly Blessing was digging through the original 7344 lines of code for the WorldWideWeb source. She found the code that could explain why we were seeing junk.

<link rel="..."

In this case, when the parser encountered <link rel="…" it would see the <.


“Yes, a tag; let’s slurp it up”.


Then it reads li and the parser is thinking, “This looks like a list item, good stuff.”


Then encounters the n (of link) and, excusing the paring algorithm because it was the first, would then abort the style it was about to apply and promptly spit out the rest of the content on screen, having already swallowed up the first four characters: <lin.

k rel="stylesheet" href="...">

With that, we decided to make the executive design decision that we would strip out any elements that were unknown to the original WorldWideWeb browser — link, script, video and img — which of course there was no image support in the world’s first browser.

This is the first little cheat we applied, so that the page would be more pleasing to you, the visitor of our emulator. Otherwise you’d be presented with a lot of scary looking junk.

So now we have all the reference we need to be able to replicate this browser:

  • The machine running the original operating system, which gives us colours, fonts, menus and so on.
  • The browser itself, how windows behave, what’s in the menus, what makes the experience unique to that period of time.
  • And finally how it looks when we visit URLs.

So off we go.



While Remy sets about recreating the functionality of the WorldWideWeb browser, Angela was recreating the user interface using CSS.

Inputs. Buttons. Icons. Menus. All with the exact borders, highlights and shadows used in the UI of the NeXT operating system, including having the scrollbar on the left side of windows.

Meanwhile the rest of us were putting together an explanatory website to give some backstory to what we were doing. I spent most of my time working on a timeline showing thirty years before and thirty years after the original proposal for the web.

Marking up (and styling) an interactive timeline that looks good in a modern browser and still works in the first ever web browser.

The WorldWideWeb browser inherited fonts from the NeXTSTEP operating system. It mostly used Helvetica and a font called Ohlfs (created by Keith Ohlfs). Helvetica is ubiquitous but Ohlfs was never seen outside of a NeXT machine.

Our teammates Mark and Brian were obsessed with accurately recreating the typography. We couldn’t use modern fonts which are vector based. We need pixeliness.

So Mark and Brian took a screenshot of the NeXT machine’s alphabet. With help from afar from font designer David Jonathan Ross, they traced each square pixel in a vector program and then exported that as a web font. Now we’ve got a web font that deliberately isn’t anti-aliased. It’s a vector format that recreates the look of a bitmap.

Put the pixelly font together with the CSS interface elements and you’ve got something that really looks like the old WorldWideWeb programme.


This is the final product of our work at CERN that week. A fully working WorldWideWeb emulator giving a reasonable close experience of what it was like to surf the web as if it were 30 years ago.

This is entirely in the browser and was written using:

  • React,
  • React Draggable for the windows and menus,
  • React Hotkeys for keyboard combo shortcuts (we replicated the original OS as much as we could),
  • idb-keyval for some local storage,
  • Parcel for bundling.

These tools weren’t chosen particular because they were the best tools for the job, but rather because they were the tools I knew that well enough that would help speed up my development process.

We worked hard to replicate the look and feel as much as we could. We even replicated typos found throughout the WorldWideWeb app:

An excercise in global information availability

Why don’t we see how it looks…


There’s kind of irony in this in that it relies heavily on JavaScript. In fact, there’s nothing there other than JavaScript. But of course the WorldWideWeb browser couldn’t deal with JavaScript—JavaScript hadn’t been invented yet. So the one URL that definitely wouldn’t work in this emulator is …the emulator itself.


(Which Jeremy was blaming me for.)

This is what you see when you visit the WorldWideWeb browser for the first time. We can see we are welcomed by the universe of hypertext. We’ve got these menus over here that you can drag off and open panels (I always thought this was an ordering bug but the operating system actually works like this).

We’ll go ahead and open the Fronteers website. I go to “Document” and then I go to “Open from full document reference” (because the word URL didn’t exist). I’m going to pop the Fronteers URL in here. And there it is. We’ve got the Fronteers website. Looks pretty good. (One of my favourite UI bits is this scrollbar on the left hand side instead of the right.)

We can follow the links. Actually one of my favourite features that was in this original browser that we replicated was this “Navigate” menu. I’ve just opened the first link in the document, but I can click on “Next”, and “Next” a bunch of times and it will cycle through each one of the links on the page that I launched from and let me read all the pages that the Fronteers site links to (which I really like). I can go backwards and forwards, and so on.

One thing you might have already noticed is that there are no URLs here. And in fact, to view source, it was considered a kind of diagnostic option and it was very very tucked away. The reason for this is that URLs—and the source HTML or SGML—was considered ugly and potentially a bad user experience.

But there’s one thing about navigating here that’s different. To open this link, I had to double-click.


The WorldWideBrowser was more of a prototype than anything else. It demonstrated the potential of the World Wide Web project, but it only worked on NeXT machines.

To show how the World Wide Web could work on any computer, the second ever web browser was the Line Mode Browser, coded by Nicola Pellow. It had a very basic text interface—no clicking on links—but it could be installed anywhere.

Lots of other geeks and nerds were working on their own web browsers, but it was Marc Andreesen’s Mosaic browser that really blew the doors open for the web. It had a nice usable interface, and it (unilaterrally) introduced the innovation of images on the web.

Andreesen went on to found Netscape. The World Wide Web took off at an unprecedented rate. Microsoft brought out their Internet Explorer browser and started trying to catch up with Netscape. We had the browser wars. Later we got even more browsers, like Safari and Chrome, while Netscape morphed into Firefox and Internet Explorer morphed into Edge. And the rest is history.

But all of these browsers were missing something that was in the original WorldWideWeb browser.


The reason I have to double-click on these links is that, when I do a single click, it actually places the cursor. The cursor is blinking there on “Fronteers.” And the reason I can place the cursor is because I can edit the document.

I see Fronteers here is missing a heading. We want to welcome you all:


We want to make that a heading. Let’s style that. It’s a heading.

So the browser was meant to edit documents. Let’s put a bit of text here:

Great talks from Remy and Jeremy

(forget about everyone else). Now if I want to create a link, I’ll go ahead and navigate to Jeremy’s site, https://adactio.com. I’m going to do “Link”, then “Mark all”, which is a way of copying the URL to that window. Then I go back to the Fronteers website, select “Jeremy”, and then do “Link to marked.” I can double-click on Jeremy’s name it will open up his website.

I can save this document as well. I’m going to call it fronteers.html.

Let’s do a hard reboot—a browser refresh. I come back to my machine a couple of days later, “Ah, the Fronteers page!”. I’m going to open that again, and it linked to that really handsome guy in the sprite shirt. And yes, the links still work.

In fact, this documentation that you see when the WorldWideWeb browser launches was written, styled, and linked using the WorldWideWeb browser. The WorldWideWeb browser was for a web that you could read and write.

But this didn’t survive. It was a hurdle that was too tricky to propose or implement across the different types servers that existed and for the upcoming browsers that were on the horizon.

And so it wasn’t standardised and doesn’t exist today.

But this is an important lesson from the time: reducing complexity increases the chances of mass adoption.

In the end, simplicity wins.


I think that’s a pattern we see over and over again, not just in the history of the web, but before the web. Simplicity wins.

Ted Nelson famously to this day thinks that the World Wide Web is weak sauce. It didn’t try to solve complex right out of the gate, like handling micro-payments.

As we saw, the hypertext community that one-way linking was ridiculous. But simplicity does win out.

Unfortunately that’s why browsers ended up just being browsers. We got some of the functionality back with wikis, content management systems, and social media to a certain extent. But I think it’s still a bit of a shame that when I want to browse a web page, I’m using one piece of software—the browser—but when I want to make a web page, I’m using another piece of software (or multiple pieces of software) to get something on to the web.

I feel like we lost something.


We head home after a week of hacking.

We were all invited back in March earlier this year for the Web@30 event that was taking place to celebrate the web but also Sir Tim Berners-Lee.

A NeXT machine from 1989 running the WorldWideWeb browser and my laptop in 2019 running https://worldwideweb.cern.ch

A few of us, Jeremy, Martin, and myself, went back to CERN for the the first leg of the event. There was even a video showing off our work as part of the main conference. Jeremy and I even chased Tim Berners-Lee back to London at the science museum like obsessive web fanboys. It was a lot of fun!

The night before I got a message from Jean-François Groff, pictured here on the right. JF Groff joined Tim Berners-Lee 30 years ago and created libwww (a precursor to libcurl).

The message read:

Sitting with Tim right now. He loves your browser!

Crushed it.

It’s amazing that we were able to pull this off in a week just with text editors and information that’s freely available. It’s mind boggling how much we can do today and how far it can reach. And it all started on that NeXTSTEP machine 30 years ago.

What I really loved about this project was working with this brilliantly old technology, digging around at the birth of browsers and the web.

I wouldn’t be stood here today, if it weren’t for the web.

I wouldn’t even know Jeremy, if it weren’t for the web.

I wouldn’t have a career, if it weren’t for the web.

I loved seeing how such old technology, the original WorldWideWeb browser was still able to render my blog. Because I put content first, delivered markup from the server. The page rendered because HTML really is backward compatible.

HTML and HTTP are just text. Nothing terribly fancy. Dare I say, beautifully simple, and as we said before, simplicity wins the day.

This same simplicity is what allows us all to have the chance for an equal voice. The web allows us to freely publish our thoughts and experiences. We have to fight to protect that kind of web.

And we’ve got to work at keeping it simple.


When we returned to CERN for the 30th anniversary celebrations, one of the other people there was the journalist Zeynep Tefepkçi.

When @Zeynep met NeXT.

Lou, Zeynep, Tim, Robert, and Jean-François. #Web30

She was on a panel along with Tim Berners-Lee, Robert Caillau, Jean-François Groff, and Lou Montoulli. At the end of the panel discussion, she was asked:

What would you tell the next generation about how to use this wonderful tool?

She replied:

If you have something wonderful, if you do not defend it, you will lose it.

If you do not defend the magic and the things that make it wonderful, it’s just not going to stay magical by itself.

Defend the simplicity and resilience that’s so central to the web.

I don’t know about you, but I often feel that just trying to make a web page has become far too complicated. But this is complexity that we have chosen with our tools, processes, and assumptions. We’ve buried the magic. The magic of linking web pages together. The magic of a working global hypertext system, where nobody needs to ask for permission to publish.

Tim Berners-Lee prototyped the first web browser, but the subsequent world wide web wasn’t created by any one person. It was created by everyone. That. Is. Magical.

I don’t want the web to become a place where only an elite priesthood get to experience the magic of creation. I’m going to fight to defend the openness of the world wide web. This is for everyone. Not just for everyone to use; it’s for everyone to create.

Tuesday, October 15th, 2019

Jeremy Keith & Remy Sharp - How We Built the World Wide Web in Five Days on Vimeo

Here’s the talk that Remy and I gave at Fronteers in Amsterdam, all about our hack week at CERN. We’re both really pleased with how this turned out and we’d love to give it again!

Tuesday, September 17th, 2019

Geneva Copenhagen Amsterdam

Back in the late 2000s, I used to go to Copenhagen every for an event called Reboot. It was a fun, eclectic mix of talks and discussions, but alas, the last one was over a decade ago.

It was organised by Thomas Madsen-Mygdal. I hadn’t seen Thomas in years, but then, earlier this year, our paths crossed when I was back at CERN for the 30th anniversary of the web. He got a real kick out of the browser recreation project I was part of.

I few months ago, I got an email from Thomas about the new event he’s running in Copenhagen called Techfestival. He was wondering if there was some way of making the WorldWideWeb project part of the event. We ended up settling on having a stand—a modern computer running a modern web browser running a recreation of the first ever web browser from almost three decades ago.

So I showed up at Techfestival and found that the computer had been set up in a Shoreditchian shipping container. I wasn’t exactly sure what I was supposed to do, so I just hung around nearby until someone wandering by would pause and start tentatively approaching the stand.

If you’re at Techfestival.co in Copenhagen, drop in to this shipping container where I’ll be demoing WorldWideWeb.cern.ch

“Would you like to try the time machine?” I asked. Nobody refused the offer. I explained that they were looking at a recreation of the world’s first web browser, and then showed them how they could enter a URL to see how the oldest web browser would render a modern website.

Lots of people entered facebook.com or google.com, but some people had their own websites, either personal or for their business. They enjoyed seeing how well (or not) their pages held up. They’d take photos of the screen.

People asked lots of questions, which I really enjoyed answering. After a while, I was able to spot the themes that came up frequently. Some people were confusing the origin story of the internet with the origin story of the web, so I was more than happy to go into detail on either or both.

The experience helped me clarify in my own mind what was exciting and interesting about the birth of the web—how much has changed, and how much and stayed the same.

All of this very useful fodder for a conference talk I’m putting together. This will be a joint talk with Remy at the Fronteers conference in Amsterdam in a couple of weeks. We’re calling the talk How We Built the World Wide Web in Five Days:

The World Wide Web turned 30 years old this year. To mark the occasion, a motley group of web nerds gathered at CERN, the birthplace of the web, to build a time machine. The first ever web browser was, confusingly, called WorldWideWeb. What if we could recreate the experience of using it …but within a modern browser! Join (Je)Remy on a journey through time and space and code as they excavate the foundations of Tim Berners-Lee’s gloriously ambitious and hacky hypertext system that went on to conquer the world.

Neither of us is under any illusions about the nature of a joint talk. It’s not half as much work; it’s more like twice the work. We’ve both seen enough uneven joint presentations to know what we want to avoid.

We’ve been honing the material and doing some run-throughs at the Clearleft HQ at 68 Middle Street this week. The talk has a somewhat unusual structure with two converging timelines. I think it’s going to work really well, but I won’t know until we actually deliver the talk in Amsterdam. I’m excited—and a bit nervous—about it.

Whether it’s in a shipping container in Copenhagen or on a stage in Amsterdam, I’m starting to realise just how much I enjoy talking about web history.

Friday, March 29th, 2019

CERN Hack days – Chiteri’s Blog

Martin gives a personal history of his time at the two CERN hack projects …and also provides a short history of the universe.

Monday, March 25th, 2019

WWW:BTB — History (Overview)

This history of the World Wide Web from 1996 is interesting for the way it culminates with …Java. At that time, the language seemed like it would become the programmatic lingua franca for the web. Brendan Eich sure upset that apple cart.

Wednesday, March 13th, 2019

What a day that was

I woke up in Geneva. The celebrations to mark the 30th anniversary of the World Wide Web were set to begin early in the morning.

It must be said, March 12th 1989 is kind of an arbitrary date. Maybe the date that the first web page went online should mark the birth of the web (though the exact date might be hard to pin down). Or maybe it should be August 6th, 1991—the date that Tim Berners-Lee announced the web to the world (well, to the alt.hypertext mailing list at least). Or you could argue that it should be April 30th, 1993, the date when the technology of the web was officially put into the public domain.

In the end, March 12, 1989 is as good a date as any to mark the birth of the web. The date that Tim Berners-Lee shared his proposal. That’s when the work began.

Exactly thirty years later, myself, Martin, and Remy are registered and ready to attend the anniversay event in the very same room where the existence of the Higgs boson was announced. There’s coffee, and there are croissants, but despite the presence of Lou Montulli, there are no cookies.

Happy birthday, World Wide Web! Love, One third of the https://worldwideweb.cern.ch team at CERN.

The doors to the auditorium open and we find some seats together. The morning’s celebrations includes great panel discussions, and an interview with Tim Berners-Lee himself. In the middle of it all, they show a short film about our hack week recreating the very first web browser.

It was surreal. There we were, at CERN, in the same room as the people who made the web happen, and everyone’s watching a video of us talking about our fun project. It was very weird and very cool.

Afterwards, there was cake. And a NeXT machine—the same one we had in the room during our hack week. I feel a real attachment to that computer.

A NeXT machine from 1989 running the WorldWideWeb browser and my laptop in 2019 running https://worldwideweb.cern.ch

We chatted with lots of lovely people. I had the great pleasure of meeting Peggie Rimmer. It was her late husband, Mike Sendall, who gave Tim Berners-Lee the time (and budget) to pursue his networked hypertext project. Peggie found Mike’s copy of Tim’s proposal in a cupboard years later. This was the copy that Mike had annotated with his now-famous verdict, “vague but exciting”. Angela has those words tattooed on her arm—Peggie got a kick out of that.

Eventually, Remy and I had to say our goodbyes. We had to get to the airport to catch our flight back to London. Taxi, airport, plane, tube; we arrived at the Science Museum in time for the evening celebrations. We couldn’t have been far behind Tim Berners-Lee. He was making a 30 hour journey from Geneva to London to Lagos. We figured seeing him at two out of those three locations was plenty.

This guy again! I think I’m being followed.

By the end of the day we were knackered but happy. The day wasn’t all sunshine and roses. There was a lot of discussion about the negative sides of the web, and what could be improved. A lot of that was from Sir Tim itself. But mostly it was a time to think about just how transformative the web has been in our lives. And a time to think about the next thirty years …and the web we want.